Skip to content

Exios66/JJB_Gallery

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

GitHub-Based Portfolio & Gallery of Jack J. Burleson

GitHub

Welcome! This GitHub repository serves as an evolving digital portfolio and gallery for Jack J. Burleson, showcasing a curated selection of previous work, open-source projects, previous research focuses, and presentations.


Pages Build Deployment License: MIT Latest Release Stars Issues Last Commit


Table of Contents


About Me

image

Hi! I'm Jack J. Burleson – I am a data scientist, artificial intelligence-research engineer, a computational neuroscience researcher, and an open-source enthusiast.

I am passionate about fully expanding the notion of making data science, machine learning, and advanced statistical analytics democratically accessible and meaningful through clear code examples, integrations, and insightful visualizations.

This living portfolio highlights select projects in engineering, data analysis, machine learning, and technical writing.

GitHub User's stars

GitHub followers


πŸ“‚ Repository Map

GitHub Tag

GitHub Release

JJB_Gallery (gh-pages branch)
β”œβ”€β”€ index.html
β”œβ”€β”€ theme-switcher.html
β”œβ”€β”€ search.json
β”œβ”€β”€ CHANGELOG.html
β”œβ”€β”€ SECURITY.html
β”œβ”€β”€ _build/
β”‚   └── quarto/
β”‚       β”œβ”€β”€ site_libs/        # Quarto & JS/CSS site assets
β”‚       β”œβ”€β”€ index_files/       # Quarto-generated HTML dependencies
β”‚       └── randomforest_files/ # Notebook render assets
β”œβ”€β”€ assets/
β”‚   └── css/                   # Theme stylesheets
β”œβ”€β”€ projects/
β”‚   β”œβ”€β”€ CrewAI/                # Multi-agent system (renamed from Crewai)
β”‚   β”œβ”€β”€ terminal_agents/
β”‚   └── ...                    # Other project directories
β”œβ”€β”€ notebooks/
β”‚   └── SciKit/                # Jupyter notebooks (moved from Jupyter/)
β”œβ”€β”€ Quarto/
β”‚   └── randomforest.qmd       # Quarto documents
β”œβ”€β”€ docs/
β”‚   └── (documentation sources)
β”œβ”€β”€ scripts/
β”‚   └── (helper or build scripts)
β”œβ”€β”€ _quarto.yml
β”œβ”€β”€ index.qmd
β”œβ”€β”€ requirements/
β”‚   β”œβ”€β”€ requirements.txt
β”‚   β”œβ”€β”€ requirements-minimal.txt
β”‚   └── requirements-micro.txt
β”œβ”€β”€ config/
β”‚   └── pip.conf
β”œβ”€β”€ docs/
β”‚   β”œβ”€β”€ QUICK_START.md
β”‚   └── setup/
β”‚       β”œβ”€β”€ NPM_SETUP.md
β”‚       β”œβ”€β”€ EXTERNAL_STORAGE_SETUP.md
β”‚       └── ...
β”œβ”€β”€ LICENSE
β”œβ”€β”€ README.md
β”œβ”€β”€ CHANGELOG.md
└── SECURITY.md

GitHub repo size


Project Gallery

Project Description Link
CrewAI Multi-Agent Swarm System Multi-agent architecture using CrewAI CrewAI/README.md
Terminal Agents AI coding agents for the terminal terminal_agents/README.md
Random Forest Essentials Theory + application Quarto docs Quarto/RandomForest
Jupyter ML & Pandas Notebooks Machine learning workflow demos notebooks/
PyPI-Ready Python Template Full CI/CD + packaging starter Template Repo
RAG Model Application Retrieval-Augmented Generation system RAG_Model/README.md
Psychometrics (NASA TLX) Workload assessment toolkit Psychometrics/README.md
Chat UI Modern SvelteKit chat interface ChatUi/README.md
LiteLLM Integration Unified LLM API proxy litellm/README.md

Production & Deployment

This repository maintains production-grade standards for all included projects. Each major project is designed for scalability, reliability, and ease of deployment.

Deployment Options

Projects in this portfolio support multiple deployment strategies:

  1. Docker Containers: Most applications (ChatUi, iOS Chatbot, LiteLLM) include Dockerfiles for containerized deployment.
  2. Cloud Platforms: Ready for deployment on AWS, Google Cloud, Azure, Vercel, and Netlify.
  3. Self-Hosted: Comprehensive guides for running on bare metal or virtual machines.

Production Readiness

  • CI/CD: GitHub Actions workflows for automated testing and linting.
  • Security: Regular dependency scanning, API key management best practices, and security headers.
  • Monitoring: Health check endpoints and logging configuration.
  • Documentation: Detailed setup guides, API references, and troubleshooting.

For detailed deployment guides, please refer to individual project READMEs or the Quick Start Guide.

Operational Runbooks

  • Health Checks: /health endpoints available on API services.
  • Logging: Structured logging configured for major services.
  • Backup: Procedures for backing up vector databases and chat history.

Architecture Overview

The repository follows a modular architecture designed for interoperability and maintainability.

Core Components

  1. Frontend Layer: SvelteKit (ChatUi) and Flask templates (iOS Chatbot) providing user interfaces.
  2. API Layer: RESTful APIs and WebSocket connections handling communication.
  3. Intelligence Layer:
    • Orchestration: CrewAI for multi-agent coordination.
    • Inference: LiteLLM proxy for unified model access (OpenAI, Anthropic, Ollama).
    • Retrieval: RAG Model with FAISS vector database.
  4. Data Layer:
    • Vector Store: FAISS for semantic search.
    • Storage: File-based storage and support for external drives (optimized for large models).
  5. Infrastructure: Docker containers and Python virtual environments.

Performance Considerations

  • Caching: Utilization of external storage for large model weights and pip/npm caches.
  • Async Processing: Asynchronous API calls for non-blocking operations in ChatUi and LiteLLM.
  • Optimized Builds: Minimal docker images and tree-shaking for frontend assets.

Recent Additions

  • CrewAI Swarm System overhaul
  • Terminal Coding Agents improvements
  • Random Forest Quarto docs expansion
  • Production deployment guides for all major projects
  • Enhanced security policies and operational documentation

Skills

  • Programming: Python, R, JavaScript, TypeScript, SvelteKit, Flask
  • ML & Data: Pandas, NumPy, scikit-learn, TensorFlow, PyTorch
  • Visualization: Matplotlib, Seaborn, Quarto, D3.js
  • EngOps: GitHub Actions, Docker, Kubernetes, pre-commit
  • Documentation: Jupyter, Markdown, Quarto, Technical Writing
  • AI Engineering: RAG, Vector Databases, LLM Integration, Agent Systems

Presentations

  • Random Forest Essentials – 2024
  • Talking to Agents – 2024
  • (More added continuously…)

Preferred Contact Methods

πŸ“© [email protected] (Business) πŸ“© [email protected] (Academic) 🌐 https://github.com/Exios66
πŸ”— https://linkedin.com/in/jack-j-burleson


Socials


Further Reading

πŸ“š Documentation

Comprehensive documentation is available in the docs/ directory:


About

Personal Portfolio & Gallery of Previous Work.

Topics

Resources

License

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •