Skip to content

FDC0178/asl-gloss-pipeline

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

"""Markdown file describing project goals, usage, and setup."""

Text-to-ASL Gloss Pipeline

This project provides a machine learning-based solution for converting English text into American Sign Language (ASL) gloss and evaluating results with similarity scoring.

Repository Layout

.
├── data/
│   ├── simulated_asl_dataset.csv  # Simulated dataset for development and testing
│   ├── test_input.xlsx           # Test data for similarity evaluation
├── src/
│   ├── preprocess.py             # Code for data preprocessing
│   ├── model.py                  # Code for training and evaluating the model
│   ├── predict.py                # Code for making predictions with the model
│   ├── similarity.py             # Code for similarity evaluation
├── notebooks/
│   ├── exploration.ipynb         # Jupyter notebook for initial dataset exploration
├── main.py                       # Main script to orchestrate pipeline
├── requirements.txt              # Required libraries
└── README.md                     # Project description and instructions

Setup

  1. Clone the repository:

    git clone https://github.com/your-repo/asl-gloss-pipeline.git
    cd asl-gloss-pipeline
    
  2. Install required libraries:

    pip install -r requirements.txt
    
  3. Prepare your dataset:

    • Place the simulated_asl_dataset.csv file in the data/ directory.

Usage

  1. Train the Model:

    python main.py --train data/simulated_asl_dataset.csv --model model.pkl
    
  2. Make Predictions:

    python main.py --model model.pkl --input "I am going to the store"
    
  3. Evaluate Similarity:

    python main.py --evaluate data/test_input.xlsx --output data/evaluation_results.xlsx
    

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages