"""Markdown file describing project goals, usage, and setup."""
This project provides a machine learning-based solution for converting English text into American Sign Language (ASL) gloss and evaluating results with similarity scoring.
.
├── data/
│ ├── simulated_asl_dataset.csv # Simulated dataset for development and testing
│ ├── test_input.xlsx # Test data for similarity evaluation
├── src/
│ ├── preprocess.py # Code for data preprocessing
│ ├── model.py # Code for training and evaluating the model
│ ├── predict.py # Code for making predictions with the model
│ ├── similarity.py # Code for similarity evaluation
├── notebooks/
│ ├── exploration.ipynb # Jupyter notebook for initial dataset exploration
├── main.py # Main script to orchestrate pipeline
├── requirements.txt # Required libraries
└── README.md # Project description and instructions
-
Clone the repository:
git clone https://github.com/your-repo/asl-gloss-pipeline.git cd asl-gloss-pipeline
-
Install required libraries:
pip install -r requirements.txt
-
Prepare your dataset:
- Place the
simulated_asl_dataset.csv
file in thedata/
directory.
- Place the
-
Train the Model:
python main.py --train data/simulated_asl_dataset.csv --model model.pkl
-
Make Predictions:
python main.py --model model.pkl --input "I am going to the store"
-
Evaluate Similarity:
python main.py --evaluate data/test_input.xlsx --output data/evaluation_results.xlsx