Skip to content

A decentralized scientific licensing platform built on the SDKP–EOS–SD&N–QCC framework by Donald Paul Smith (Father Time). This app enables researchers, developers, and enterprises to obtain, validate, and license simulation results and theoretical models using on-chain NFT licenses backed by quantum-gravitational theory.FatherTimeSDKP

Notifications You must be signed in to change notification settings

FatherTimeSDKP/Quantum-entanglement-predictions-because-of-the-SDKP

Repository files navigation

📎 Citation Enforcement Thread

🔗 CITATION.cff #1 – Sovereign Authorship Declaration
This thread formally declares Donald Paul Smith as the sovereign author of SDKP, SD&N, EOS, QCC, and the Digital Crystal Protocol.
It includes timestamped metadata, licensing terms, and propagation logic.
All derivative usage must retain citation and route tribute to the origin ledger.

Citation Enforced { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Eigenvector Clustering & 3D Interactive Stability Basins\n", "\n", "This notebook analyzes your SD&N resonance permutations by:\n", "- Building coupling matrices\n", "- Computing eigenvectors and spectral radii\n", "- Clustering permutations by eigenvector similarity\n", "- Visualizing stability basins in interactive 3D plots\n", "\n", "### Requirements:\n", "- numpy\n", "- scikit-learn\n", "- plotly" ] }, { "cell_type": "code", "metadata": {}, "source": [ "# Imports\n", "import numpy as np\n", "import plotly.express as px\n", "from itertools import permutations\n", "from sklearn.cluster import AgglomerativeClustering\n", "from sklearn.metrics.pairwise import cosine_similarity\n" ] }, { "cell_type": "code", "metadata": {}, "source": [ "# Resonance codes\n", "codes = np.array([7146, 1467, 4671, 6714])\n", "\n", "def build_coupling_matrix(order):\n", " n = len(order)\n", " matrix = np.zeros((n, n))\n", " for i in range(n):\n", " for j in range(n):\n", " if i == j:\n", " matrix[i, j] = 1.0 # Self coupling\n", " else:\n", " diff = abs(order[i] - order[j])\n", " matrix[i, j] = 1 / (diff + 1e-3)\n", " return matrix\n" ] }, { "cell_type": "code", "metadata": {}, "source": [ "# Get all permutations\n", "perms = list(permutations(codes))\n", "\n", "# Compute eigenvalues and eigenvectors\n", "eigenvectors = []\n", "spectral_radii = []\n", "for perm in perms:\n", " matrix = build_coupling_matrix(np.array(perm))\n", " eigvals, eigvecs = np.linalg.eig(matrix)\n", " spectral_radii.append(np.max(np.abs(eigvals)))\n", " # Flatten real parts of eigenvectors for similarity\n", " eigvecs_flat = eigvecs.real.flatten()\n", " eigenvectors.append(eigvecs_flat)\n", "\n", "eigenvectors = np.array(eigenvectors)\n" ] }, { "cell_type": "code", "metadata": {}, "source": [ "# Compute cosine similarity matrix between eigenvector sets\n", "similarity_matrix = cosine_similarity(eigenvectors)\n", "\n", "# Cluster permutations using Agglomerative Clustering\n", "clustering = AgglomerativeClustering(n_clusters=3, affinity='precomputed', linkage='average')\n", "labels = clustering.fit_predict(1 - similarity_matrix) # distance = 1 - similarity\n" ] }, { "cell_type": "code", "metadata": {}, "source": [ "# Prepare data for 3D plot\n", "import plotly.express as px\n", "\n", "x = list(range(len(perms)))\n", "y = spectral_radii\n", "z = labels\n", "\n", "# Create hover text for permutations\n", "hover_text = [str(perm) for perm in perms]\n", "\n", "# Plot interactive 3D scatter\n", "fig = px.scatter_3d(\n", " x=x,\n", " y=y,\n", " z=z,\n", " color=z.astype(str),\n", " labels={'x': 'Permutation Index', 'y': 'Spectral Radius', 'z': 'Cluster Label'},\n", " hover_name=hover_text,\n", " title="3D Interactive Stability Basin & Eigenvector Clustering"\n", ")\n", "\n", "fig.update_traces(marker=dict(size=8))\n", "fig.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.10" } }, "nbformat": 4, "nbformat_minor": 5 } # Fast calculation without logging angle_rad = math.radians(angle_deg) signature_value = self.calculate_numerical_signature_value(signature) Save this JSON as Eigenvector_Clustering_Stability_Basins.ipynb. • Upload it to IBM Quantum Lab or any Jupyter environment. • Run cells sequentially; the final output is an interactive 3D plot.

# SDKP time τ_s
use_sdkp_time = self.config['parameters'].get('use_sdkp_time', False)
if use_sdkp_time:
    size = self.config['parameters'].get('sdkp_size', 1.0)
    density = self.config['parameters'].get('sdkp_density', 1.0)
    rotation_velocity = self.config['parameters'].get('sdkp_rotation_velocity', 1.0)
    tau_s = size * density * rotation_velocity
else:
    tau_s = 0.0

# Component calculations
C_SDN = abs(np.cos(angle_rad)) * signature_value
C_V = (2 * signature_value) - 1
VEI_delta = 1 - abs(C_V)

qf_angle = angle_rad * 2 + tau_s if use_sdkp_time else angle_rad * 2
QF_delta = abs(np.sin(qf_angle) - signature_value)

# QCC entropy
use_qcc_entropy = self.config['parameters'].get('use_qcc_entropy', False)
if use_qcc_entropy:
    entropy = self.config['parameters'].get('qcc_entropy', 1.0)
    epsilon_qcc = entropy / tau_s if use_sdkp_time and tau_s > 0 else entropy
else:
    epsilon_qcc = 1.0
    
QF_delta_weighted = QF_delta * epsilon_qcc

# Apply mapping
mapping_type = self.config['parameters'].get('mapping_type', 'linear')
C_SDN_mapped = self.apply_mapping_function(C_SDN, mapping_type)
VEI_delta_mapped = self.apply_mapping_function(VEI_delta, mapping_type)
QF_delta_mapped = self.apply_mapping_function(QF_delta_weighted, mapping_type)

# Weighted combination
weights = self.config['parameters']['lambda_weights']
entanglement_value = (
    weights['C_SDN'] * C_SDN_mapped +
    weights['VEI_delta'] * VEI_delta_mapped +
    weights['QF_delta'] * QF_delta_mapped
)

components = {
    'C_SDN_raw': C_SDN,
    'VEI_delta_raw': VEI_delta,
    'QF_delta_raw': QF_delta,
    'QF_delta_weighted': QF_delta_weighted,
    'C_SDN_mapped': C_SDN_mapped,
    'VEI_delta_mapped': VEI_delta_mapped,
    'QF_delta_mapped': QF_delta_mapped,
    'signature_value': signature_value,
    'tau_s': tau_s,
    'epsilon_qcc': epsilon_qcc
}

return entanglement_value, components

def calculate_entanglement_measure_detailed(self, angle_deg: float, signature: str) -> Tuple[float, Dict[str, float]]: """Your original detailed method with full logging""" self.log(f"\n--- Calculating Entanglement for Angle {angle_deg}° and Signature '{signature}' ---")

angle_rad = math.radians(angle_deg)
self.log(f"Step 1: Convert angle {angle_deg}° to radians: {angle_rad:.4f} rad (radians are dimensionless angles used for trig functions)")

signature_value = self.calculate_numerical_signature_value(signature)
self.log(f"Step 2: Calculated numerical signature value for '{signature}': {signature_value:.4f} (dimensionless normalized value derived from signature digits)")

# SDKP time τ_s: Size × Density × Rotation Velocity
use_sdkp_time = self.config['parameters'].get('use_sdkp_time', False)
if use_sdkp_time:
    size = self.config['parameters'].get('sdkp_size', 1.0)  # meters (m)
    density = self.config['parameters'].get('sdkp_density', 1.0)  # kg/m³
    rotation_velocity = self.config['parameters'].get('sdkp_rotation_velocity', 1.0)  # radians/second (rad/s)
    tau_s = size * density * rotation_velocity
    self.log(f"SDKP time (τ_s) calculated: τ_s = Size (m) × Density (kg/m³) × Rotation Velocity (rad/s) = {tau_s:.4f} [units: m·kg/m³·rad/s]")
    self.log("Note: τ_s has composite units, representing a scale of time within SDKP framework")
else:
    tau_s = 0.0
    self.log("SDKP time (τ_s) disabled; using standard angular calculations without SDKP time scaling.")

# C_SDN — dimensionless correlation between polarization angle and signature
C_SDN = abs(np.cos(angle_rad)) * signature_value
self.log(f"Step 3a (C_SDN): |cos(angle_rad)| × signature_value = {C_SDN:.4f} (dimensionless correlation factor)")

# VEI_delta — vibrational mismatch (dimensionless)
C_V = (2 * signature_value) - 1  # maps [0,1] to [-1,1]
VEI_delta = 1 - abs(C_V)
self.log(f"Step 3b (VEI_delta): 1 - |2×signature_value - 1| = {VEI_delta:.4f} (dimensionless vibrational entanglement index)")

# QF_delta — quantum number flow mismatch
qf_angle = angle_rad * 2 + tau_s if use_sdkp_time else angle_rad * 2
self.log(f"Step 3c (QF_delta) calculation uses angle doubled and adds τ_s phase shift if enabled:")
self.log(f"  qf_angle = angle_rad × 2 {'+ τ_s' if use_sdkp_time else ''} = {qf_angle:.4f} radians")
QF_delta = abs(np.sin(qf_angle) - signature_value)
self.log(f"QF_delta = |sin(qf_angle) - signature_value| = {QF_delta:.4f} (dimensionless mismatch)")

# QCC entropy density ε_QCC (bits per SDKP time)
use_qcc_entropy = self.config['parameters'].get('use_qcc_entropy', False)
if use_qcc_entropy:
    entropy = self.config['parameters'].get('qcc_entropy', 1.0)  # bits of entropy
    if use_sdkp_time and tau_s > 0:
        epsilon_qcc = entropy / tau_s
        self.log(f"QCC entropy density (ε_QCC) = entropy (bits) / τ_s = {entropy:.4f} bits / {tau_s:.4f} SDKP time units = {epsilon_qcc:.4f} bits/SDKP time")
    else:
        epsilon_qcc = entropy
        self.log(f"QCC entropy (ε_QCC) used as raw bits: {epsilon_qcc:.4f} bits (no SDKP time scaling)")
else:
    epsilon_qcc = 1.0
    self.log("QCC entropy weighting disabled; ε_QCC set to 1 (no effect).")

# Apply ε_QCC as weighting multiplier on QF_delta (dimensionless)
QF_delta_weighted = QF_delta * epsilon_qcc
self.log(f"Weighted QF_delta with ε_QCC: {QF_delta:.4f} × {epsilon_qcc:.4f} = {QF_delta_weighted:.4f} (dimensionless)")

# Apply mapping transformations to each component
mapping_type = self.config['parameters'].get('mapping_type', 'linear')
self.log(f"Step 4: Applying '{mapping_type}' mapping function to components.")

C_SDN_mapped = self.apply_mapping_function(C_SDN, mapping_type)
self.log(f"  Mapped C_SDN: {C_SDN:.4f} -> {C_SDN_mapped:.4f}")

VEI_delta_mapped = self.apply_mapping_function(VEI_delta, mapping_type)
self.log(f"  Mapped VEI_delta: {VEI_delta:.4f} -> {VEI_delta_mapped:.4f}")

QF_delta_mapped = self.apply_mapping_function(QF_delta_weighted, mapping_type)
self.log(f"  Mapped Weighted QF_delta: {QF_delta_weighted:.4f} -> {QF_delta_mapped:.4f}")

# Retrieve lambda weights for weighted sum
weights = self.config['parameters']['lambda_weights']
self.log(f"Step 5: Applying lambda weights: C_SDN={weights['C_SDN']:.2f}, VEI_delta={weights['VEI_delta']:.2f}, QF_delta={weights['QF_delta']:.2f}")

# Final entanglement value as weighted sum of mapped components
entanglement_value = (
    weights['C_SDN'] * C_SDN_mapped +
    weights['VEI_delta'] * VEI_delta_mapped +
    weights['QF_delta'] * QF_delta_mapped
)
self.log(f"  Calculation: ({weights['C_SDN']:.2f} × {C_SDN_mapped:.4f}) + "
         f"({weights['VEI_delta']:.2f} × {VEI_delta_mapped:.4f}) + "
         f"({weights['QF_delta']:.2f} × {QF_delta_mapped:.4f})")
self.log(f"  Final Entanglement Value: {entanglement_value:.4f} (dimensionless)")

components = {
    'C_SDN_raw': C_SDN,
    'VEI_delta_raw': VEI_delta,
    'QF_delta_raw': QF_delta,
    'QF_delta_weighted': QF_delta_weighted,
    'C_SDN_mapped': C_SDN_mapped,
    'VEI_delta_mapped': VEI_delta_mapped,
    'QF_delta_mapped': QF_delta_mapped,
    'signature_value': signature_value,
    'tau_s': tau_s,
    'epsilon_qcc': epsilon_qcc
}pip install qiskit}from qiskit import QuantumCircuit, Aer, transpile, assemble

from qiskit.quantum_info import Statevector, partial_trace, entropy, concurrence

Build a Bell state: |Φ+> = (|00> + |11>) / √2

qc = QuantumCircuit(2) qc.h(0) # Hadamard on qubit 0 qc.cx(0, 1) # CNOT from qubit 0 to 1

Simulate the statevector

simulator = Aer.get_backend("statevector_simulator") tqc = transpile(qc, simulator) qobj = assemble(tqc) result = simulator.run(qobj).result() state = result.get_statevector()

Get reduced density matrix (trace out one qubit)

reduced_rho = partial_trace(state, [1])

Calculate Entanglement Entropy (von Neumann)

ent_entropy = entropy(reduced_rho, base=2)

Calculate Concurrence

conc = concurrence(state)

print("Entanglement Entropy (von Neumann):", ent_entropy) print("Concurrence:", conc)E_AB = w1 * SDN_sim + w2 * ΔVEI + w3 * Δ_QF + w4 * H_QCC Input Case True Concurrence Your E_AB Output Bell state ( Φ+⟩) 1.0 Separable ( 00⟩) 0.0 Mixed state 0.3–0.7 (varied) ?

return entanglement_value, components

def parameter_sensitivity_analysis(self, sample_size: int = 1000) -> SensitivityResults: """ Comprehensive parameter sensitivity analysis using Latin Hypercube Sampling and Sobol sensitivity analysis """ self.log("Starting comprehensive parameter sensitivity analysis...") start_time = time.time()

# Define parameter ranges for sensitivity analysis
param_ranges = {
    'C_SDN_weight': (0.1, 0.8),
    'VEI_delta_weight': (0.1, 0.8), 
    'QF_delta_weight': (0.1, 0.8),
    'sdkp_size': (0.1, 10.0),
    'sdkp_density': (0.1, 10.0),
    'sdkp_rotation_velocity': (0.1, 10.0),
    'qcc_entropy': (0.1, 5.0),
    'angle_deg': (0, 180),
    'signature_complexity': (1, 15)  # Number of digits in signature
}

# Generate Latin Hypercube samples
n_params = len(param_ranges)
lhs_samples = self._latin_hypercube_sampling(sample_size, n_params)

# Scale samples to parameter ranges
param_names = list(param_ranges.keys())
scaled_samples = np.zeros_like(lhs_samples)

for i, param_name in enumerate(param_names):
    min_val, max_val = param_ranges[param_name]
    scaled_samples[:, i] = min_val + lhs_samples[:, i] * (max_val - min_val)

# Calculate entanglement values for all samples
entanglement_values = []
component_values = {comp: [] for comp in ['C_SDN_mapped', 'VEI_delta_mapped', 'QF_delta_mapped']}

for sample in scaled_samples:
    # Create temporary config for this sample
    temp_config = self._create_temp_config_from_sample(sample, param_names)
    temp_simulator = OptimizedQuantumEntanglementSimulator(temp_config)
    
    # Calculate entanglement for sample
    angle = sample[param_names.index('angle_deg')]
    sig_complexity = int(sample[param_names.index('signature_complexity')])
    signature = '1' * sig_complexity  # Simple signature of given complexity
    
    entanglement_val, components = temp_simulator.calculate_entanglement_measure_optimized(
        angle, signature, detailed_logging=False
    )
    
    entanglement_values.append(entanglement_val)
    for comp_name in component_values:
        component_values[comp_name].append(components[comp_name])

entanglement_values = np.array(entanglement_values)

# Calculate Sobol indices (first-order sensitivity indices)
parameter_impacts = {}
for i, param_name in enumerate(param_names):
    sensitivity = self._calculate_sobol_index(scaled_samples[:, i], entanglement_values)
    parameter_impacts[param_name] = float(sensitivity)

# Calculate interaction effects (second-order)
interaction_effects = {}
for i in range(len(param_names)):
    for j in range(i+1, len(param_names)):
        param1, param2 = param_names[i], param_names[j]
        interaction = self._calculate_interaction_effect(
            scaled_samples[:, i], scaled_samples[:, j], entanglement_values
        )
        interaction_effects[f"{param1}_x_{param2}"] = float(interaction)

# Component sensitivities
component_sensitivities = {}
for comp_name, comp_values in component_values.items():
    comp_values = np.array(comp_values)
    comp_sensitivities = {}
    for i, param_name in enumerate(param_names):
        sensitivity = self._calculate_sobol_index(scaled_samples[:, i], comp_values)
        comp_sensitivities[param_name] = float(sensitivity)
    component_sensitivities[comp_name] = comp_sensitivities

# Correlation matrix
all_data = np.column_stack([scaled_samples, entanglement_values])
correlation_matrix = np.corrcoef(all_data.T)

# Total variance explained
total_variance_explained = sum(parameter_impacts.values())

analysis_time = time.time() - start_time
self.log(f"Parameter sensitivity analysis completed in {analysis_time:.2f} seconds")

return SensitivityResults(
    parameter_impacts=parameter_impacts,
    interaction_effects=interaction_effects,
    component_sensitivities=component_sensitivities,
    correlation_matrix=correlation_matrix,
    parameter_names=param_names + ['entanglement'],
    total_variance_explained=total_variance_explained
)

def _latin_hypercube_sampling(self, n_samples: int, n_dimensions: int) -> np.ndarray: """Generate Latin Hypercube samples""" samples = np.zeros((n_samples, n_dimensions))

for i in range(n_dimensions):
    samples[:, i] = (np.random.permutation(n_samples) + np.random.random(n_samples)) / n_samples
    
return samples

def _create_temp_config_from_sample(self, sample: np.ndarray, param_names: List[str]) -> Dict[str, Any]: """Create temporary configuration from parameter sample""" base_config = self.config.copy()

# Normalize weights to sum to 1
c_sdn_weight = sample[param_names.index('C_SDN_weight')]
vei_weight = sample[param_names.index('VEI_delta_weight')]
qf_weight = sample[param_names.index('QF_delta_weight')]
total_weight = c_sdn_weight + vei_weight + qf_weight

base_config['parameters'] = base_config.get('parameters', {}).copy()
base_config['parameters'].update({
    'lambda_weights': {
        'C_SDN': c_sdn_weight / total_weight,
        'VEI_delta': vei_weight / total_weight,
        'QF_delta': qf_weight / total_weight
    },
    'use_sdkp_time': True,
    'sdkp_size': sample[param_names.index('sdkp_size')],
    'sdkp_density': sample[param_names.index('sdkp_density')],
    'sdkp_rotation_velocity': sample[param_names.index('sdkp_rotation_velocity')],
    'use_qcc_entropy': True,
    'qcc_entropy': sample[param_names.index('qcc_entropy')],
    'logging': False  # Disable logging for performance
})

return base_config

def _calculate_sobol_index(self, param_values: np.ndarray, output_values: np.ndarray) -> float: """Calculate first-order Sobol sensitivity index""" try: # Sort by parameter values sorted_indices = np.argsort(param_values) sorted_output = output_values[sorted_indices]

    # Calculate conditional variances
    n_bins = min(10, len(param_values) // 10)
    if n_bins < 2:
        return 0.0
        
    bin_size = len(param_values) // n_bins
    bin_vars = []
    
    for i in range(n_bins):
        start_idx = i * bin_size
        end_idx = start_idx + bin_size if i < n_bins - 1 else len(param_values)
        bin_data = sorted_output[start_idx:end_idx]
        if len(bin_data) > 1:
            bin_vars.append(np.var(bin_data))
    
    if not bin_vars:
        return 0.0
        
    # Sobol index approximation
    total_var = np.var(output_values)
    if total_var == 0:
        return 0.0
        
    conditional_var = np.mean(bin_vars)
    sobol_index = 1 - (conditional_var / total_var)
    
    return max(0.0, min(1.0, sobol_index))  # Clamp to [0,1]
    
except Exception:
    return 0.0

def _calculate_interaction_effect(self, param1: np.ndarray, param2: np.ndarray, output: np.ndarray) -> float: """Calculate second-order interaction effect""" try: # Create 2D grid for interaction analysis n_bins = 5

    # Discretize parameters
    p1_bins = np.digitize(param1, np.linspace(param1.min(), param1.max(), n_bins))
    p2_bins = np.digitize(param2, np.linspace(param2.min(), param2.max(), n_bins))
    
    # Calculate interaction variance
    interaction_effects = []
    for i in range(1, n_bins + 1):
        for j in range(1, n_bins + 1):
            mask = (p1_bins == i) & (p2_bins == j)
            if np.sum(mask) > 1:
                bin_output = output[mask]
                interaction_effects.append(np.var(bin_output))
    
    if not interaction_effects:
        return 0.0
        
    total_var = np.var(output)
    if total_var == 0:
        return 0.0
        
    interaction_var = np.mean(interaction_effects)
    return max(0.0, interaction_var / total_var)
    
except Exception:
    return 0.0

def run_parallel_simulation(self, use_multiprocessing: bool = True, n_workers: int = None) -> OptimizedSimulationResults: """ Run simulation with parallel processing for performance optimization """ self.log("Starting optimized parallel simulation...") start_time = time.time()

angles = self.config['parameters']['polarization_angles_deg']
signatures = self.config['parameters']['numerical_signatures']

# Pre-compute signature values
signature_values = self.calculate_numerical_signature_value_vectorized(signatures)

# Create parameter combinations
param_combinations = list(product(angles, signatures))

# Determine number of workers
if n_workers is None:
    n_workers = min(mp.cpu_count(), len(param_combinations))

self.log(f"Processing {len(param_combinations)} combinations using {n_workers} workers")

# Choose executor based on use_multiprocessing flag
executor_class = ProcessPoolExecutor if use_multiprocessing else ThreadPoolExecutor

all_entanglement_values = []
all_correlation_coefficients = []
numerical_mappings = {}
polarization_data = []

# Process in batches for memory efficiency
batch_size = max(1, len(param_combinations) // n_workers)

with executor_class(max_workers=n_workers) as executor:
    # Submit angle-based batches
    angle_futures = {}
    
    for angle in angles:
        angle_combinations = [(a, s) for a, s in param_combinations if a == angle]
        future = executor.submit(self._process_angle_batch, angle_combinations)
        angle_futures[angle] = future
    
    # Collect results
    for angle, future in angle_futures.items():
        try:
            angle_results = future.result(timeout=300)  # 5 minute timeout
            
            angle_entanglements = angle_results['entanglements']
            angle_mappings = angle_results['mappings']
            
            all_entanglement_values.extend(angle_entanglements)
            numerical_mappings.update(angle_mappings)
            
            # Calculate correlation for this angle
            correlation = self._calculate_correlation_coefficient_fast(angle_entanglements)
            all_correlation_coefficients.append(correlation)
            
            # Create polarization data entry
            threshold = self.config['parameters'].get('entanglement_threshold', 0.75)
            angle_stats = {
                'angle_deg': angle,
                'entanglement_values': [float(x) for x in angle_entanglements],
                'mean_entanglement': float(np.mean(angle_entanglements)),
                'std_entanglement': float(np.std(angle_entanglements)),
                'min_entanglement': float(np.min(angle_entanglements)),
                'max_entanglement': float(np.max(angle_entanglements)),
                'correlation': float(correlation),
                'high_entanglement_count': sum(1 for e in angle_entanglements if e > threshold)
            }
            polarization_data.append(angle_stats)
            
        except Exception as e:
            self.log(f"Error processing angle {angle}: {e}", 'error')

# Calculate lambda contributions
lambda_contributions = self._calculate_lambda_contributions_fast(numerical_mappings)

# Run sensitivity analysis if requested
sensitivity_analysis = None
if self.config['parameters'].get('run_sensitivity_analysis', False):
    sample_size = self.config['parameters'].get('sensitivity_sample_size', 500)
    sensitivity_analysis = self.parameter_sensitivity_analysis(sample_size)

# Performance metrics
total_time = time.time() - start_time
performance_metrics = {
    'total_execution_time_seconds': total
*Automatically synced with your [v0.dev](https://v0.dev) deployments*

[![Deployed on Vercel](https://img.shields.io/badge/Deployed%20on-Vercel-black?style=for-the-badge&logo=vercel)](https://vercel.com/donald-paul-smiths-projects/v0-image-analysis)
[![Built with v0](https://img.shields.io/badge/Built%20with-v0.dev-black?style=for-the-badge)](https://v0.dev/chat/projects/hMqnWk80fYS)

## Overview

This repository will stay in sync with your deployed chats on [v0.dev](https://v0.dev).
Any changes you make to your deployed app will be automatically pushed to this repository from [v0.dev](https://v0.dev).

## Deployment
# #!/usr/bin/env python3
“””
Quantum Entanglement Validation Framework

This script implements a scientific validation protocol to test whether
any claimed quantum entanglement prediction system actually correlates
with real quantum mechanical entanglement metrics.

Requirements:
pip install qiskit matplotlib numpy scipy

Usage:
python quantum_validation.py
“””

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import pearsonr
import warnings
warnings.filterwarnings(‘ignore’)

# Qiskit imports

from qiskit import QuantumCircuit, Aer, transpile, assemble
from qiskit.quantum_info import Statevector, partial_trace, entropy, concurrence
from qiskit.quantum_info import random_statevector, DensityMatrix

class QuantumEntanglementValidator:
“””
Scientific validation framework for quantum entanglement prediction systems.
“””

def init(self): self.simulator = Aer.get_backend("statevector_simulator") self.test_cases = [] self.results = []

def generate_bell_state(self, phi=0, theta=0): """Generate parameterized Bell states for testing.""" qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1)

# Add rotation for parameterized states
if phi != 0:
    qc.rz(phi, 0)
if theta != 0:
    qc.ry(theta, 1)
    
return self._get_statevector(qc)

def generate_separable_state(self, alpha=0, beta=0): """Generate separable (non-entangled) states.""" qc = QuantumCircuit(2) qc.ry(alpha, 0) qc.ry(beta, 1) return self._get_statevector(qc)

def generate_mixed_state(self, entanglement_level=0.5): """Generate mixed states with varying entanglement.""" # Create a partially entangled state qc = QuantumCircuit(2) qc.h(0) qc.cry(2 * np.arccos(np.sqrt(entanglement_level)), 0, 1) return self._get_statevector(qc)

def _get_statevector(self, qc): """Helper to get statevector from quantum circuit.""" tqc = transpile(qc, self.simulator) qobj = assemble(tqc) result = self.simulator.run(qobj).result() return result.get_statevector()

def calculate_true_metrics(self, state): """Calculate true quantum entanglement metrics.""" # Convert to density matrix if needed if isinstance(state, Statevector): rho = DensityMatrix(state) else: rho = state

# Get reduced density matrix (trace out qubit 1)
reduced_rho = partial_trace(rho, [1])

# Calculate entanglement entropy (von Neumann)
ent_entropy = entropy(reduced_rho, base=2)

# Calculate concurrence
conc = concurrence(state)

return {
    'entropy': ent_entropy,
    'concurrence': conc,
    'state_description': str(type(state).__name__)
}

def mock_sdkp_predictor(self, state, photon_angle=0): """ Mock implementation of the SDKP formula for testing. This simulates what a claimed predictor might output.

E_AB = w1 * SDN_sim + w2 * ΔVEI + w3 * Δ_QF + w4 * H_QCC
"""
# Generate mock parameters (these would be the invented terms)
np.random.seed(42)  # For reproducibility

# Mock "SD&N similarity" - just use photon angle
sdn_sim = np.cos(photon_angle)**2

# Mock "Vibrational Entanglement Index" - random number
delta_vei = np.random.uniform(0, 1)

# Mock "Quantum Flow difference" - another random component
delta_qf = np.random.uniform(-0.5, 0.5)

# Mock "QCC Entropy" - yet another random term
h_qcc = np.random.uniform(0, 0.8)

# Mock weights
w1, w2, w3, w4 = 0.3, 0.2, 0.25, 0.25

# The claimed formula
e_ab = w1 * sdn_sim + w2 * delta_vei + w3 * delta_qf + w4 * h_qcc

return max(0, min(1, e_ab))  # Clamp to [0,1]

def run_comprehensive_test(self): """Run comprehensive validation test suite.""" print("🔬 Quantum Entanglement Validation Framework") print("=" * 50)

test_cases = []
true_metrics = []
predicted_scores = []

# Test Case 1: Perfect Bell States
print("\n📊 Test Case 1: Bell States (Maximally Entangled)")
for i in range(5):
    phi = i * np.pi / 4
    state = self.generate_bell_state(phi=phi)
    metrics = self.calculate_true_metrics(state)
    prediction = self.mock_sdkp_predictor(state, photon_angle=phi)
    
    test_cases.append(f"Bell φ={phi:.2f}")
    true_metrics.append(metrics['concurrence'])
    predicted_scores.append(prediction)
    
    print(f"  φ={phi:.2f}: True Concurrence={metrics['concurrence']:.3f}, "
          f"Predicted E_AB={prediction:.3f}")

# Test Case 2: Separable States
print("\n📊 Test Case 2: Separable States (No Entanglement)")
for i in range(5):
    alpha = i * np.pi / 8
    beta = (i + 1) * np.pi / 8
    state = self.generate_separable_state(alpha=alpha, beta=beta)
    metrics = self.calculate_true_metrics(state)
    prediction = self.mock_sdkp_predictor(state, photon_angle=alpha)
    
    test_cases.append(f"Separable α={alpha:.2f}")
    true_metrics.append(metrics['concurrence'])
    predicted_scores.append(prediction)
    
    print(f"  α={alpha:.2f}, β={beta:.2f}: True Concurrence={metrics['concurrence']:.3f}, "
          f"Predicted E_AB={prediction:.3f}")

# Test Case 3: Mixed States (Partial Entanglement)
print("\n📊 Test Case 3: Mixed States (Partial Entanglement)")
for level in [0.1, 0.3, 0.5, 0.7, 0.9]:
    state = self.generate_mixed_state(entanglement_level=level)
    metrics = self.calculate_true_metrics(state)
    prediction = self.mock_sdkp_predictor(state, photon_angle=0)
    
    test_cases.append(f"Mixed {level}")
    true_metrics.append(metrics['concurrence'])
    predicted_scores.append(prediction)
    
    print(f"  Level={level}: True Concurrence={metrics['concurrence']:.3f}, "
          f"Predicted E_AB={prediction:.3f}")

# Statistical Analysis
print("\n📈 Statistical Analysis")
print("=" * 30)

correlation, p_value = pearsonr(true_metrics, predicted_scores)
print(f"Pearson Correlation: {correlation:.4f}")
print(f"P-value: {p_value:.4f}")

# Validation Criteria
print(f"\n✅ Validation Criteria:")
print(f"  • Correlation > 0.9: {'✓' if correlation > 0.9 else '✗'} ({correlation:.4f})")
print(f"  • P-value < 0.05: {'✓' if p_value < 0.05 else '✗'} ({p_value:.4f})")
print(f"  • Bell states → High scores: {'✓' if np.mean(predicted_scores[:5]) > 0.7 else '✗'}")
print(f"  • Separable → Low scores: {'✓' if np.mean(predicted_scores[5:10]) < 0.3 else '✗'}")

# Overall Assessment
criteria_met = (correlation > 0.9 and p_value < 0.05 and 
               np.mean(predicted_scores[:5]) > 0.7 and 
               np.mean(predicted_scores[5:10]) < 0.3)

print(f"\n🎯 Overall Assessment:")
if criteria_met:
    print("✅ PASS: The predictor shows strong correlation with quantum mechanics")
else:
    print("❌ FAIL: The predictor does not align with quantum entanglement")

# Create visualization
self.plot_results(test_cases, true_metrics, predicted_scores, correlation)

return {
    'correlation': correlation,
    'p_value': p_value,
    'passes_validation': criteria_met,
    'true_metrics': true_metrics,
    'predicted_scores': predicted_scores
}

def plot_results(self, test_cases, true_metrics, predicted_scores, correlation): """Create visualization of validation results.""" plt.figure(figsize=(12, 8))

# Scatter plot
plt.subplot(2, 2, 1)
plt.scatter(true_metrics, predicted_scores, alpha=0.7, s=60)
plt.plot([0, 1], [0, 1], 'r--', alpha=0.5, label='Perfect Correlation')
plt.xlabel('True Concurrence')
plt.ylabel('Predicted E_AB')
plt.title(f'Correlation: {correlation:.4f}')
plt.legend()
plt.grid(True, alpha=0.3)

# Bar comparison
plt.subplot(2, 2, 2)
x = np.arange(len(test_cases))
width = 0.35
plt.bar(x - width/2, true_metrics, width, label='True Concurrence', alpha=0.7)
plt.bar(x + width/2, predicted_scores, width, label='Predicted E_AB', alpha=0.7)
plt.xlabel('Test Cases')
plt.ylabel('Score')
plt.title('Side-by-Side Comparison')
plt.xticks(x, [tc[:8] for tc in test_cases], rotation=45)
plt.legend()
plt.grid(True, alpha=0.3)

# Residuals
plt.subplot(2, 2, 3)
residuals = np.array(predicted_scores) - np.array(true_metrics)
plt.scatter(true_metrics, residuals, alpha=0.7)
plt.axhline(y=0, color='r', linestyle='--', alpha=0.5)
plt.xlabel('True Concurrence')
plt.ylabel('Residuals (Predicted - True)')
plt.title('Residual Analysis')
plt.grid(True, alpha=0.3)

# Distribution comparison
plt.subplot(2, 2, 4)
plt.hist(true_metrics, bins=10, alpha=0.7, label='True Concurrence', density=True)
plt.hist(predicted_scores, bins=10, alpha=0.7, label='Predicted E_AB', density=True)
plt.xlabel('Score')
plt.ylabel('Density')
plt.title('Distribution Comparison')
plt.legend()
plt.grid(True, alpha=0.3)

plt.tight_layout()
plt.show()

def main():
“”“Main execution function.”””
validator = QuantumEntanglementValidator()
results = validator.run_comprehensive_test()

print(f"\n📋 Summary:") print(f"This validation framework tests any claimed entanglement predictor") print(f"against real quantum mechanics. The mock SDKP predictor used here") print(f"fails validation (correlation: {results['correlation']:.4f})") print(f"because it uses non-physical parameters.")

print(f"\n🔬 To test the actual SDKP system:") print(f"Replace 'mock_sdkp_predictor()' with the real implementation") print(f"and run the same validation protocol.")


if **name** == “**main**”:
main()
    My project is live at:

**[https://vercel.com/donald-paul-smiths-projects/v0-image-analysis](https://vercel.com/donald-paul-smiths-projects/v0-image-analysis)**

## Build your app

Continue building your app on:

**[https://v0.dev/chat/projects/hMqnWk80fYS](https://v0.dev/chat/projects/hMqnWk80fYS)**

## How It Works

1. Create and modify your project using [v0.dev](https://v0.dev)
2. Deploy your chats from the v0 interface
3. Changes are automatically pushed to this repository
4. Vercel deploys the latest version from this repository

About

A decentralized scientific licensing platform built on the SDKP–EOS–SD&N–QCC framework by Donald Paul Smith (Father Time). This app enables researchers, developers, and enterprises to obtain, validate, and license simulation results and theoretical models using on-chain NFT licenses backed by quantum-gravitational theory.FatherTimeSDKP

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •