Skip to content

iron_gql generates typed async GraphQL clients and runtime helpers from schemas for Python services

License

Notifications You must be signed in to change notification settings

Flamefork/iron_gql

Repository files navigation

iron_gql

License main PyPI - Version

iron_gql is a lightweight GraphQL code generator and runtime that turns schema SDL and real query documents into typed Python clients powered by Pydantic models. Use it to wire GraphQL APIs into services, CLIs, background jobs, or tests without hand-writing boilerplate.

Installation

pip install iron-gql            # runtime only (httpx + pydantic)
pip install iron-gql[codegen]   # + graphql-core for code generation

Key Features

  • Query discovery. generate_gql_package scans your codebase for calls that look like <package>_gql("""..."""), validates each statement, and emits a module with strongly typed helpers.
  • Typed inputs and results. Generated Pydantic models mirror every selection set, enum, and input object referenced by the discovered queries.
  • Async runtime. runtime.GQLClient speaks to GraphQL endpoints over httpx and can shortcut network hops when pointed at an ASGI app.
  • Deterministic validation. graphql-core (codegen dependency) enforces schema compatibility and rejects duplicate operation names with incompatible bodies.

Package Layout

  • runtime.py – provides the async GQLClient, the reusable GQLQuery base class, and value serialization helpers.
  • codegen/generator.py – orchestrates query discovery, validation, and module rendering.
  • codegen/parser.py – converts GraphQL AST into typed helper structures consumed by the renderer.

Getting Started

  1. Describe your schema. Point generate_gql_package at an SDL file (schema.graphql). Include whichever root types you rely on (query, mutation, subscription).
  2. Author queries where they live. Import the future helper and wrap your GraphQL statement:
    from myapp.gql.client import client_gql
    
    get_user = client_gql(
        """
        query GetUser($id: ID!) {
            user(id: $id) {
                id
                name
            }
        }
        """
    )
    The generator infers the helper name (client_gql) from the package path you ask it to build.
  3. Generate the client module.
    from pathlib import Path
    
    from iron_gql.codegen import generate_gql_package
    
    generate_gql_package(
        schema_path=Path("schema.graphql"),
        package_full_name="myapp.gql.client",
        base_url_import="myapp.config:GRAPHQL_URL",
        scalars={"ID": "builtins:str"},
        to_camel_fn_full_name="myapp.inflection:to_camel",
        to_snake_fn=my_project_to_snake,
        debug_path=Path("iron_gql/debug/myapp.gql.client"),
        src_path=Path("."),
    )
    The call writes myapp/gql/client.py containing:
    • an async client singleton,
    • Pydantic result and input models,
    • a query class per operation with typed execute methods,
    • overloads for the helper function so editors can infer return types.
  4. Call your API.
    async def fetch_user(user_id: str):
        query = get_user.with_headers({"Authorization": "Bearer token"})
        result = await query.execute(id=user_id)
        return result.user

Custom Scalars

The generator maps GraphQL scalars to Python types in two layers:

Built-in scalars are mapped automatically:

GraphQL Python
String, Int, Float, Boolean str, int, float, bool
Date datetime.date
DateTime datetime.datetime
JSON object
Upload iron_gql.FileVar

Custom scalars are configured via the scalars parameter in "module:type" format:

generate_gql_package(
    ...,
    scalars={
        "ID": "builtins:str",
        "Money": "decimal:Decimal",
        "ULID": "ulid:ULID",
    },
)

Custom scalar types must be Pydantic-compatible — i.e. Pydantic should know how to parse them from JSON (deserialization) and serialize them to JSON. This works out of the box for standard library types (datetime, Decimal, UUID, Enum) and for any type that implements __get_pydantic_core_schema__. Unknown scalars fall back to object with a log warning.

Customization Hooks

  • Naming conventions. Supply to_camel_fn_full_name (module:path string) and a to_snake_fn callable to align casing with your own alias_generator.
  • Endpoint configuration. base_url_import is written verbatim into the generated module; point it at a global string, config object, or helper that returns the GraphQL endpoint.

Runtime Highlights

  • GQLClient accepts ASGI target_app so you can reuse the runtime for production HTTP calls or in-process ASGI execution.
  • GQLQuery.with_headers and GQLQuery.with_file_uploads clone the query object, making per-call customization trivial.
  • Upload scalars map to iron_gql.FileVar for multipart file handling.
  • serialize_var converts variables to JSON-friendly structures via Pydantic's TypeAdapter, supporting custom scalar types alongside nested models, dicts, and lists.

Example

The example/ directory contains a complete working setup: a GraphQL schema with queries, mutations, enums, interfaces, unions, and fragments, plus the generation script and sample query definitions. See example/generate.py for the codegen call and example/myapp/main.py for query usage.

Testing

Override the generated client via monkeypatch (or any other module attribute patching) to point queries at a test server or an ASGI app:

from iron_gql import runtime
from myapp.gql import api

async def test_get_user(monkeypatch):
    test_client = runtime.GQLClient(
        base_url="http://testserver",
        target_app=my_asgi_app,
    )
    monkeypatch.setattr(api, "API_CLIENT", test_client)

    result = await get_user.execute(id="1")
    assert result.user.name == "Alice"

The generated query classes resolve the client by module attribute name at call time, so replacing it is sufficient. The attribute is always named {PACKAGE}_CLIENT — for a package myapp.gql.api it is API_CLIENT.

Validation and Troubleshooting

  • Errors identify the file and line where the problematic statement lives.
  • Duplicate operation names must share identical bodies; rename or consolidate to resolve the conflict.

About

iron_gql generates typed async GraphQL clients and runtime helpers from schemas for Python services

Resources

License

Stars

Watchers

Forks