Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 9 additions & 9 deletions ext/NNlibCUDAExt/scatter.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# supported op: +, -, *, /, max, min, &, |, mean
import CUDA.CUSPARSE: AbstractCuSparseArray

## TODO support sparse dst/src/idx
## See issue https://github.com/FluxML/NNlib.jl/issues/647
Expand Down Expand Up @@ -54,10 +55,9 @@ function scatter_kernel!(op::OP, dst, src, idx::CUDA.CuDeviceArray{<:CartesianIn
return nothing
end


function NNlib.scatter!(op::OP, dst::AnyCuArray,
src::AnyCuArray,
idx::AnyCuArray) where OP
function NNlib.scatter!(op::OP, dst::Union{AnyCuArray,AbstractCuSparseArray},
src::Union{AnyCuArray,AbstractCuSparseArray},
idx::Union{AnyCuArray,AbstractCuSparseArray}) where OP
isempty(idx) && return dst
dims = NNlib.scatter_dims(dst, src, idx)
args = if dims == 0
Expand All @@ -78,9 +78,9 @@ function NNlib.scatter!(op::OP, dst::AnyCuArray,
return dst
end

function NNlib.scatter!(op::typeof(mean), dst::AnyCuArray,
src::AnyCuArray,
idx::AnyCuArray)
function NNlib.scatter!(op::typeof(mean), dst::Union{AnyCuArray,AbstractCuSparseArray},
src::Union{AnyCuArray,AbstractCuSparseArray},
idx::Union{AnyCuArray,AbstractCuSparseArray})
Ns = NNlib.scatter!(+, zero(dst), one.(src), idx)
dst_ = NNlib.scatter!(+, zero(dst), src, idx)
dst .+= NNlib.safe_div.(dst_, Ns)
Expand Down Expand Up @@ -177,8 +177,8 @@ function ∇scatter_src_kernel!(op::OP, Δsrc, src, idx::CUDA.CuDeviceArray{<:Ca
end

function NNlib.∇scatter_src(op::Union{typeof(*),typeof(/)}, Δ, dst,
src::AnyCuArray,
idx::AnyCuArray)
src::Union{AnyCuArray{Tsrc,Nsrc},AbstractCuSparseArray},
idx::Union{AnyCuArray{Tidx,Nidx},AbstractCuSparseArray}) where {Tsrc,Tidx,Nsrc,Nidx}
dims = ndims(src) - ndims(idx)
Δsrc = NNlib.modify_src(op, NNlib.gather(Δ, idx), src)
rev_idx = NNlib.reverse_indices(idx)
Expand Down
108 changes: 105 additions & 3 deletions test/ext_cuda/scatter.jl
Original file line number Diff line number Diff line change
@@ -1,13 +1,13 @@
dsts = Dict(
0 => cu([3, 4, 5, 6, 7]),
1 => cu([3 3 4 4 5;
5 5 6 6 7]),
5 5 6 6 7]),
)
srcs = Dict(
(0, true) => cu(ones(Int, 3, 4)),
(0, false) => cu(ones(Int, 3) * collect(1:4)'),
(1, true) => cu(ones(Int, 2, 3, 4)),
(1, false) => cu([1, 2] .* reshape(ones(Int, 3) * collect(1:4)', 1,3,4)),
(1, false) => cu([1, 2] .* reshape(ones(Int, 3) * collect(1:4)', 1, 3, 4)),
)
idxs = [
cu([1 2 3 4;
Expand All @@ -21,7 +21,7 @@ idxs = [
(3,) (5,) (5,) (3,)])), # CartesianIndex index
]

types = [CuArray{Int32}, CuArray{Int64}, CuArray{Float32}, CuArray{Float64}]
types = [CuArray{Int32}, CuArray{Int64}, CuArray{Float32}, CuArray{Float64}, CuSparseMatrixCSC{Float32}, CuSparseMatrixCSR{Float32}, CuSparseMatrixCOO{Float32}]


@testset "scatter" begin
Expand Down Expand Up @@ -70,6 +70,108 @@ types = [CuArray{Int32}, CuArray{Int64}, CuArray{Float32}, CuArray{Float64}]
end


# Specialized sparse scatter kernels. Duplicated as test cases above do not cover sparse arrays.
dsts_sp = Dict(
0 => cu(sparse([3, 4, 5, 6, 7])),
1 => cu(sparse([3 3 4 4 5;
5 5 6 6 7])),
)
srcs_sp = Dict(
(0, true) => cu(sparse(ones(Int, 3, 4))),
(0, false) => cu(sparse(ones(Int, 3) * collect(1:4)')),
# No sparse equivalent for 3D arrays
)
types_sp = [
CuSparseMatrixCSC{Int32}, CuSparseMatrixCSC{Int64}, CuSparseMatrixCSC{Float32}, CuSparseMatrixCSC{Float64},
CuSparseMatrixCSR{Int32}, CuSparseMatrixCSR{Int64}, CuSparseMatrixCSR{Float32}, CuSparseMatrixCSR{Float64},
CuSparseMatrixCOO{Int32}, CuSparseMatrixCOO{Int64}, CuSparseMatrixCOO{Float32}, CuSparseMatrixCOO{Float64}
]

@testset "scatter sparse-specialized" begin
for T = types_sp
@testset "$(T)" begin
@testset "+" begin
# Dims is implicitly 0. No sparse equivant for multidimensional src/dst
for idx = idxs
mutated = true
gputest((dst, src) -> NNlib.scatter!(+, dst, src, idx), T(copy(dsts[0])), T(srcs[(0, mutated)]), checkgrad=true)

mutated = false
gputest(src -> NNlib.scatter(+, src, idx), T(srcs[(0, mutated)]), checkgrad=true)
end
end

@testset "-" begin
for idx = idxs
mutated = true
gputest((dst, src) -> NNlib.scatter!(-, dst, src, idx), T(copy(dsts[0])), T(srcs[(0, mutated)]), checkgrad=true)

mutated = false
gputest(src -> NNlib.scatter(-, src, idx), T(srcs[(0, mutated)]), checkgrad=true)
end
end

@testset "max" begin
for idx = idxs
mutated = true
gputest((dst, src) -> NNlib.scatter!(max, dst, src, idx), T(copy(dsts[0])), T(srcs[(0, mutated)]), checkgrad=true)

mutated = false
gputest(src -> NNlib.scatter(max, src, idx), T(srcs[(0, mutated)]), checkgrad=true)
end
end

@testset "min" begin
for idx = idxs
mutated = true
gputest((dst, src) -> NNlib.scatter!(min, dst, src, idx), T(copy(dsts[0])), T(srcs[(0, mutated)]), checkgrad=true)

mutated = false
gputest(src -> NNlib.scatter(min, src, idx), T(srcs[(0, mutated)]), checkgrad=true)
end
end
end
end

# Sparse-specialized for operations not tested on eltype <: Integer
for T = [CuSparseMatrixCSC{Float32}, CuSparseMatrixCSC{Float64}, CuSparseMatrixCSR{Float32}, CuSparseMatrixCSR{Float64}, CuSparseMatrixCOO{Float32}, CuSparseMatrixCOO{Float64}]
@testset "$(T)" begin
# Dims is implicitly 0. No sparse equivant for multidimensional src/dst
@testset "*" begin
for idx = idxs
mutated = true
gputest((dst, src) -> NNlib.scatter!(*, dst, src, idx), T(copy(dsts[0])), T(srcs[(0, mutated)]), checkgrad=true)

mutated = false
gputest(src -> NNlib.scatter(*, src, idx), T(srcs[(0, mutated)]), checkgrad=true)
end
end

@testset "/" begin
for idx = idxs, dims = [0, 1]
mutated = true
gputest((dst, src) -> NNlib.scatter!(/, dst, src, idx), T(copy(dsts[0])), T(srcs[(0, mutated)]), checkgrad=true)

mutated = false
gputest(src -> NNlib.scatter(/, src, idx), T(srcs[(0, mutated)]), checkgrad=true)
end
end

@testset "mean" begin
for idx = idxs, dims = [0, 1]
mutated = true
gputest((dst, src) -> NNlib.scatter!(mean, dst, src, idx), T(copy(dsts[0])), T(srcs[(0, mutated)]), checkgrad=true)

mutated = false
gputest(src -> NNlib.scatter(mean, src, idx), T(srcs[(0, mutated)]), checkgrad=true)
end
end
end
end
end



for T = [CuArray{Float32}, CuArray{Float64}]
@testset "$(T)" begin
@testset "*" begin
Expand Down
Loading