Skip to content

GDGoC-GalgotiasUniversity/techsprint-2026-team-team-kernel

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚀 Gemini RAG Chatbot Team: Team-Kernel An intelligent chatbot using Google's Gemini API and ChromaDB for Retrieval-Augmented Generation.

👥 Team Details

Name Role Email
Sandeep Team Lead sandeepprajapati1202@gmail.com

🎯 Problem Statement

Users need quick access to knowledge bases (Operating Systems, History, etc.) without manually searching through documentation.

Context: Traditional chatbots lack context-aware responses and require frequent retraining with new information. Students and learners struggle to get accurate, sourced answers.

Impact: Students, professionals, and researchers who need reliable, context-aware information from specific domains.

💡 Solution

A Retrieval-Augmented Generation (RAG) chatbot that combines Google's Gemini API with ChromaDB vector database to deliver accurate, context-based responses.

  • RAG Architecture: Retrieves relevant documents before generating responses for accuracy
  • Gemini Integration: Leverages advanced language models for natural, coherent answers
  • Multi-Domain Support: Easily extensible to different knowledge bases

🛠 Tech Stack

Category Technologies Used
Frontend HTML5, CSS, JavaScript (Vanilla)
Backend Python, Flask
AI/ML Google Gemini API, ChromaDB
Database ChromaDB (Vector Database)
Tools/APIs Google Generative AI

📊 MVP Features

  • ✅ OS Bot: RAG-based chatbot for Operating Systems questions
  • ✅ Web Interface: Flask-based UI with real-time chat
  • 🔄 WW2 History Bot: Domain-specific knowledge base (In Progress)

🔗 Links & Demo

🚀 Quick Start

Prerequisites

  • Python 3.8 or higher
  • Google Gemini API Key

Installation

  1. Clone the repository:

    git clone https://github.com/simplysandeepp/try-gemini.git
    cd try-gemini
  2. Create a virtual environment:

    # Windows
    python -m venv venv
    .\venv\Scripts\activate
    
    # macOS/Linux
    python3 -m venv venv
    source venv/bin/activate
  3. Install dependencies:

    pip install -r requirements.txt
  4. Set up API Key:

    • Get your Google Gemini API key from Google AI Studio
    • Open os_bot.py and replace GOOGLE_API_KEY with your actual key

Running the Application

Web Interface (Flask):

python app.py

Then open your browser and navigate to: http://127.0.0.1:5000

Console Mode - OS Bot:

python os_bot.py

Console Mode - WW2 History Bot:

python main.py

📁 Project Structure

Team-Kernel/
├── app.py              # Flask web application
├── os_bot.py           # Operating Systems RAG bot
├── main.py             # WW2 History bot
├── requirements.txt    # Python dependencies
├── templates/
│   └── index.html      # Web interface
└── README.md           # Project documentation

Testing Credentials

User: user@demo.com
Pass: hack2026

🏆 Acknowledgements

This project was developed during TechSprint Hackathon 2026, organized by GDG on Campus Galgotias University.

About

gdgoc-galgotiasuniversity-techsprint-2026-team-TechSprint-2026-Docs created by GitHub Classroom

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%