Assignment Certainly! Below is a brief overview of each function and section in Markdown format:
# Neural Style Transfer Readme
## Overview
This repository contains code for performing Neural Style Transfer using PyTorch. Neural Style Transfer is a technique that blends the content of one image with the style of another, creating visually appealing results.
## Setup
### Requirements
- Python 3.x
- PyTorch
- Matplotlib
- Requests
- NumPy
Install the required dependencies using:
```bash
pip install torch matplotlib requests numpy-
Load Images:
- Use the
load_imagefunction to load and preprocess images from file paths or URLs.
content = load_image('/content/golden_gate.jpg').to(device) style = load_image('/content/starry_night.jpg', shape=content.shape[-2:]).to(device)
- Use the
-
Display Images:
- Utilize the
show_imageanddisplay_imagesfunctions to visualize images.
content_image = show_image(content) style_image = show_image(style) display_images(content_image, style_image)
- Utilize the
-
VGG Model Setup:
- Load the VGG19 model with pre-trained weights and set to evaluation mode.
vgg = models.vgg19(pretrained=True).features for param in vgg.parameters(): param.requires_grad_(False) vgg.to(device)
-
Feature Extraction:
- Extract features from content and style images using the VGG model.
content_features = get_features(content, vgg) style_features = get_features(style, vgg)
-
Style Transfer Optimization:
- Configure parameters and set up the Adam optimizer for optimization.
show_every = 800 steps = 40000 losses = {'content': [], 'style' : [], 'total' : []} optimizer = optim.Adam([target], lr=0.003)
-
Optimization Loop:
- Perform style transfer optimization in a loop, updating the target image.
for i in range(1, steps+1): # ... (Refer to the provided code for the optimization loop)
-
Visualization:
- Visualize intermediate results at specified intervals.
if i % show_every == 0: print('Iteration {}: Total Loss = {:.2f}'.format(i, total_loss.item())) plt.imshow(show_image(target)) plt.show()
- Adjust the parameters such as
show_every,steps,content_weight, andstyle_weightbased on your specific requirements.
- Experiment with different content and style images, and tune parameters to achieve desired artistic effects.
- Ensure that the required dependencies are installed before running the code.
Feel free to modify the provided code to suit your specific use case and explore the exciting possibilities of Neural Style Transfer!


