Skip to content

NovaNet Validator Setup on NVIDIA Jetson Orin Nano

Antonis Valamontes edited this page Mar 4, 2025 · 7 revisions

NovaNet Validator Setup on NVIDIA Jetson Orin Nano

Introduction

NovaNet is a quantum-secure, AI-optimized blockchain that leverages NVIDIA Jetson Orin Nano for high-performance validator operations.

This guide provides step-by-step instructions to:

  • Deploy a NovaNet Validator Node
  • Enable GPU acceleration using NVIDIA TensorRT
  • Integrate AI-based validator selection
  • Optimize validator performance with TensorRT-accelerated models

🔗 NovaNet Validator GitHub Repository


1. Prerequisites

Before deploying a NovaNet Validator on Jetson Orin Nano, ensure you have:

  • Jetson Orin Nano Developer Kit
  • Ubuntu 20.04 (L4T) with NVIDIA JetPack SDK installed
  • Minimum 16GB microSD card or NVMe SSD for storage
  • Internet connection for package installation

2. Install Dependencies on Jetson Orin Nano

Update the system and install required dependencies:

sudo apt update && sudo apt upgrade -y
sudo apt install -y build-essential git cmake curl jq \
    python3-pip libssl-dev nvidia-jetpack cuda-toolkit-10-2 \
    libcudnn8 tensorrt libnvinfer7 libnvinfer-plugin7

3. Clone the NovaNet Validator Repository

git clone https://github.com/Galactic-Code-Developers/NovaNet-Validator.git
cd NovaNet-Validator

4. Build and Compile NovaNet Validator

make build

5. Install NVIDIA TensorRT and Optimize Validator Execution

5.1 Install TensorRT Python Bindings

pip3 install pycuda
pip3 install tensorrt

5.2 Optimize NovaNet Validator with TensorRT

We use TensorRT-optimized AI models to enhance validator selection and boost performance.

Create a TensorRT model loader (validator_inference.py):

import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit

def load_engine(trt_file_path):
    with open(trt_file_path, "rb") as f:
        runtime = trt.Runtime(trt.Logger(trt.Logger.WARNING))
        return runtime.deserialize_cuda_engine(f.read())

engine = load_engine("validator_model.trt")

def select_validator(input_data):
    context = engine.create_execution_context()
    output = context.execute_v2(bindings=[input_data])
    return output
  • This enables TensorRT acceleration for validator selection.

6. Modify NovaNet Validator Code to Use GPU

6.1 Update NovaNet Validator to Use AI-Based Selection

Modify the NovaNet Validator script to integrate TensorRT AI acceleration:

Edit novanet-cli (or relevant execution script):

from validator_inference import select_validator

def run_validator():
    validator_data = load_validator_data()
    best_validator = select_validator(validator_data)
    print(f"Selected Validator: {best_validator}")
  • This ensures AI-based validator selection using TensorRT inference.

7. Deploy NovaNet Validator Using Docker

We use a custom NVIDIA Jetson-optimized Dockerfile:

Create Dockerfile:

# Use NVIDIA’s CUDA-enabled base image for Jetson devices
FROM nvcr.io/nvidia/l4t-base:r32.7.1

# Set working directory
WORKDIR /novanet

# Install dependencies and Jetson SDK
RUN apt update && apt install -y \
    build-essential git cmake curl jq python3-pip libssl-dev \
    nvidia-jetpack cuda-toolkit-10-2 libcudnn8 tensorrt libnvinfer7 libnvinfer-plugin7 \
    && rm -rf /var/lib/apt/lists/*

# Set environment variables for CUDA and TensorRT
ENV PATH=/usr/local/cuda/bin:$PATH
ENV LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

# Copy NovaNet validator source code
COPY . /novanet

# Build the validator
RUN make build

# Start the NovaNet validator with GPU acceleration
CMD ["novanet-cli", "start", "--validator", "--use-gpu"]

8. Run the NovaNet Validator with GPU Acceleration

Use Docker to run the validator:

docker build -t novanet-validator 
docker run --runtime nvidia --gpus all -d novanet-validator
  • This ensures the validator is fully optimized for Jetson Orin Nano.

9. Monitor Validator Performance

To check the validator logs and AI inference execution:

docker logs -f novanet-validator
  • This will display AI-driven validator selection and network participation.

10. How to Contribute

NovaNet Validator is open-source, and we welcome contributions! You can help by:

  • Forking the repository and submitting pull requests.
  • Improving validator performance optimizations.
  • Developing new AI-powered selection algorithms.

🚀 Start contributing: 🔗 NovaNet Validator GitHub Repository

📚 Additional Resources

🔗 NovaNet Whitepaper
🔗 Glossary of Terms
🔗 Consensus Mechanism Overview


11. Join the NovaNet Community

📢 Follow NovaNet for updates: 💬 Discord: Join Discussion
📢 Twitter: @NovaNet_Official
👨‍💻 Telegram: Community Chat


  • NovaNet Validator on Jetson Orin Nano ensures high-performance, AI-driven blockchain validation with NVIDIA GPU acceleration!

🌍 The Future of Quantum Blockchain Starts Here!
Welcome to NovaNet – A Scalable, Secure, and Quantum-Optimized Future!