-
-
Notifications
You must be signed in to change notification settings - Fork 0
NovaNet Validator Setup on NVIDIA Jetson Orin Nano
NovaNet is a quantum-secure, AI-optimized blockchain that leverages NVIDIA Jetson Orin Nano for high-performance validator operations.
This guide provides step-by-step instructions to:
- Deploy a NovaNet Validator Node
- Enable GPU acceleration using NVIDIA TensorRT
- Integrate AI-based validator selection
- Optimize validator performance with TensorRT-accelerated models
🔗 NovaNet Validator GitHub Repository
Before deploying a NovaNet Validator on Jetson Orin Nano, ensure you have:
- Jetson Orin Nano Developer Kit
- Ubuntu 20.04 (L4T) with NVIDIA JetPack SDK installed
- Minimum 16GB microSD card or NVMe SSD for storage
- Internet connection for package installation
Update the system and install required dependencies:
sudo apt update && sudo apt upgrade -y
sudo apt install -y build-essential git cmake curl jq \
python3-pip libssl-dev nvidia-jetpack cuda-toolkit-10-2 \
libcudnn8 tensorrt libnvinfer7 libnvinfer-plugin7
git clone https://github.com/Galactic-Code-Developers/NovaNet-Validator.git
cd NovaNet-Validator
make build
pip3 install pycuda
pip3 install tensorrt
We use TensorRT-optimized AI models to enhance validator selection and boost performance.
Create a TensorRT model loader (validator_inference.py):
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
def load_engine(trt_file_path):
with open(trt_file_path, "rb") as f:
runtime = trt.Runtime(trt.Logger(trt.Logger.WARNING))
return runtime.deserialize_cuda_engine(f.read())
engine = load_engine("validator_model.trt")
def select_validator(input_data):
context = engine.create_execution_context()
output = context.execute_v2(bindings=[input_data])
return output
- This enables TensorRT acceleration for validator selection.
Modify the NovaNet Validator script to integrate TensorRT AI acceleration:
Edit novanet-cli
(or relevant execution script):
from validator_inference import select_validator
def run_validator():
validator_data = load_validator_data()
best_validator = select_validator(validator_data)
print(f"Selected Validator: {best_validator}")
- This ensures AI-based validator selection using TensorRT inference.
We use a custom NVIDIA Jetson-optimized Dockerfile:
Create Dockerfile:
# Use NVIDIA’s CUDA-enabled base image for Jetson devices
FROM nvcr.io/nvidia/l4t-base:r32.7.1
# Set working directory
WORKDIR /novanet
# Install dependencies and Jetson SDK
RUN apt update && apt install -y \
build-essential git cmake curl jq python3-pip libssl-dev \
nvidia-jetpack cuda-toolkit-10-2 libcudnn8 tensorrt libnvinfer7 libnvinfer-plugin7 \
&& rm -rf /var/lib/apt/lists/*
# Set environment variables for CUDA and TensorRT
ENV PATH=/usr/local/cuda/bin:$PATH
ENV LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
# Copy NovaNet validator source code
COPY . /novanet
# Build the validator
RUN make build
# Start the NovaNet validator with GPU acceleration
CMD ["novanet-cli", "start", "--validator", "--use-gpu"]
Use Docker to run the validator:
docker build -t novanet-validator
docker run --runtime nvidia --gpus all -d novanet-validator
- This ensures the validator is fully optimized for Jetson Orin Nano.
To check the validator logs and AI inference execution:
docker logs -f novanet-validator
- This will display AI-driven validator selection and network participation.
NovaNet Validator is open-source, and we welcome contributions! You can help by:
- Forking the repository and submitting pull requests.
- Improving validator performance optimizations.
- Developing new AI-powered selection algorithms.
🚀 Start contributing: 🔗 NovaNet Validator GitHub Repository
🔗 NovaNet Whitepaper
🔗 Glossary of Terms
🔗 Consensus Mechanism Overview
📢 Follow NovaNet for updates:
💬 Discord: Join Discussion
📢 Twitter: @NovaNet_Official
👨💻 Telegram: Community Chat
- NovaNet Validator on Jetson Orin Nano ensures high-performance, AI-driven blockchain validation with NVIDIA GPU acceleration!
🌍 The Future of Quantum Blockchain Starts Here!
Welcome to NovaNet – A Scalable, Secure, and Quantum-Optimized Future!