A simulation framework for modeling exotic Higgs decay events involving superluminal dark photons, based on the Superluminal Graviton Condensate Vacuum (SGCV) model. This tool is designed to assess Time-of-Flight (ToF) anomalies and spatial origin displacements in high-energy collider environments, such as ATLAS or SHiP.
This project implements a theoretical particle simulation to test predictions from the SGCV framework:
H → γ_DP → γ
Where:
-
$\gamma_{ ext{DP}}$ : a transient dark photon traveling at$v > c$ , - which converts into a Standard Model photon inside the detector,
- producing measurable
$\Delta t$ and$\Delta x$ anomalies.
- GEANT4-compatible Monte Carlo event modeling
- Adjustable dark photon velocities and path segments
- High-precision ToF tracking and vertex displacement analysis
- Configurable detector smearing and resolution parameters
- Google Colab compatibility for rapid execution and visualization
SGCV-Simulation/
├── README.md
├── LICENSE
├── requirements.txt
├── .gitignore
├── SGCV-DarkPhoton-Simulator/
│ ├── simulate_tof_anomalies.py # Main simulation engine
│ └── SGCV_DarkPhoton_Colab.ipynb # Google Colab version
│ └── src/
│ ├── __init__.py
│ ├── sgcv_simulation.py <-- Core GEANT4-based simulation code
│ ├── detector_geometry.gdml <-- Simplified geometry for ATLAS/SHiP
│ ├── event_generator.py <-- Higgs → γγ + dark photon MC generation
│ └── plot_utils.py <-- Helper functions to visualize Δt, Δx
├── data/
│ └── example_results.csv <-- Example Δt, Δx outputs
├── docs/
│ └── SGCV_Simulation_Manual.pdf <-- Short user manual + figure explanations
│ └── figures/
│ ├── tof_anomaly_example.png # TBA
│ ├── graviton_arc_diagram.png # TBA
│ └── bullet_analogy.png # TBA
├── SGCV-HiggsDecay-Simulator/
├── CMakeLists.txt
├── README.md
│ └── src/
│ ├── DetectorConstruction.cc
│ ├── PrimaryGeneratorAction.cc
│ ├── PhysicsList.cc
│ ├── EventAction.cc
│ ├── RunAction.cc
│ ├── SteppingAction.cc
│ ├── SGCVPhysicsExtension.cc // Custom superluminal DP handling
├────── include/
│ ├── DetectorConstruction.hh
│ ├── PrimaryGeneratorAction.hh
│ ├── PhysicsList.hh
│ ├── EventAction.hh
│ ├── RunAction.hh
│ ├── SteppingAction.hh
│ ├── SGCVPhysicsExtension.hh
├────── macros/
│ └── run.mac
└────── data/
└── output.root
Install required packages:
pip install -r requirements.txt
Run the simulation:
python simulate_tof_anomalies.py
Launch the ready-to-run notebook:
🔗 SGCV_DarkPhoton_Colab.ipynb 'Pending Update'
Includes:
- Preloaded parameters for SGCV validation
- Visualization of
$\Delta t$ histograms and scatter plots
The simulation produces:
- Histograms of time anomalies (
$\Delta t$ ) - Scatter plots of photon origin displacements (
$\Delta x$ ) - Statistical comparison to Standard Model baselines
All plots can be saved as PNG/PDF for use in research figures or papers.
This simulator is based on the paper:
"Investigating Superluminal Dark Photons and Their Influence on Higgs Boson Decay Through Time-of-Flight Anomalies"
- DOI: http://dx.doi.org/10.13140/RG.2.2.35920.52488
- Antonios Valamontes, 2025
"The Superluminal Graviton Condensate Vacuum: A Framework for Quantum Gravity and Unified Field Theory Paper #9858"
- DOI: 10.13140/RG.2.2.30811.89123
- Antonios Valamontes, 2025
"Experiment for the detection of superluminal propagating dark photons at CERN and their correlation with gravitons and the Higgs Boson H→γγ decay event"
- DOI: 10.2139/ssrn.4950704
- Emmanouil N. Markoulakis and Antonios Valamontes, 2025
It models how displaced vacuum gravitons (in the SGCV model) produce dark photon intermediaries that travel superluminally, leading to detectable collider anomalies.
- No formal collaboration with ATLAS/SHiP exists at this time.
- The authors welcome scientific dialogue, replication, and code validation efforts.
- Antonios Valamontes — [email protected]
- John Karantonis — [email protected]
This project is licensed under the terms of the MIT License.
See LICENSE for full details.