Skip to content

Converter from different popular CGM data export formats and datasets to a unified format suitable for ML training and inference

License

Notifications You must be signed in to change notification settings

GlucoseDAO/cgm_format

Repository files navigation

cgm_format

Python library for converting vendor-specific Continuous Glucose Monitoring (CGM) data (Dexcom, Libre) into a standardized unified format for ML training and inference.

Tests

Features

  • Vendor format detection: Automatic detection of Dexcom, Libre, and Unified formats
  • Robust parsing: Handles BOM marks, encoding artifacts, and vendor-specific CSV quirks
  • Unified schema: Standardized data format with service columns (metadata) and data columns
  • Idempotent processing: All operations are idempotent - applying them multiple times produces the same result
  • Schema validation: Comprehensive validation and enforcement system with Frictionless Data Table Schema support
  • Type-safe: Polars-based with strict type definitions and enum support
  • Quality tracking: Fine-grained data quality tracking via bitwise flags
  • Extensively tested: Comprehensive test suite with real data (no mocking)
  • Extensible: Clean abstract interfaces for adding new vendor formats

Installation

# Using uv (recommended)
uv pip install -e .

# Or using pip
pip3 install -e .

# Optional dependencies
uv pip install -e ".[extra]"  # pandas, pyarrow, frictionless
uv pip install -e ".[cli]"    # typer, rich (for cgm-cli tool)
uv pip install -e ".[dev]"    # pytest + all extras

CLI Tool

The package includes a comprehensive CLI tool for CGM data processing with 8 commands:

Commands:

  • detect - Format detection
  • parse - Parse to unified format
  • validate - Schema validation (single file)
  • report - Comprehensive validation report with Frictionless (directory)
  • process - Interpolation & synchronization
  • pipeline - Full 6-stage processing pipeline
  • info - File information & statistics
  • batch - Batch process directories

Installation:

# Install with CLI support
uv pip install -e ".[cli]"  # Adds typer + rich dependencies

# Verify installation
cgm-cli --help

Usage:

# Three ways to run
cgm-cli <command>                        # Installed command
python -m cgm_format.cgm_cli <command>   # Module execution  
python scripts/cgm_cli.py <command>      # Direct script

# Examples
cgm-cli detect data/patient.csv                    # Detect format
cgm-cli parse data/dexcom.csv -o unified.csv       # Parse to unified
cgm-cli pipeline data/libre.csv -o output.csv      # Full pipeline
cgm-cli report data/ -o report.txt --frictionless  # Validation report
cgm-cli batch data/raw/ -o data/processed/         # Batch process

# Run interactive example
uv run python examples/example_cli_usage.py --skip-slow

Key Features:

  • Rich terminal output (colors, progress bars, formatted tables)
  • Frictionless validation with automatic suppression of known vendor quirks
  • Comprehensive statistics (glucose, quality flags, event counts)
  • Processing warnings and quality issue detection
  • Batch validation reports for entire directories

See scripts/README.md for complete command reference.

Quick Start

Basic Parsing

from cgm_format import FormatParser
import polars as pl

# Parse any supported CGM file (Dexcom, Libre, or Unified)
unified_df = FormatParser.parse_file("data/example.csv")

# Or parse from base64 (useful for web APIs)
unified_df = FormatParser.parse_base64(base64_encoded_csv)

# Access the data
print(unified_df.head())

# Save to unified format
FormatParser.to_csv_file(unified_df, "output.csv")

Complete Inference Pipeline

from cgm_format import FormatParser, FormatProcessor

# Stage 1-3: Parse vendor format to unified
unified_df = FormatParser.parse_file("data/dexcom_export.csv")

# Stage 4-5: Process for inference
processor = FormatProcessor(
    expected_interval_minutes=5,
    small_gap_max_minutes=15
)

# Fill gaps and create sequences
processed_df = processor.interpolate_gaps(unified_df)

# Prepare final inference data (returns full UnifiedFormat)
unified_df, warnings = processor.prepare_for_inference(
    processed_df,
    minimum_duration_minutes=180,      # Require 3 hours minimum (default: 60)
    maximum_wanted_duration=1440       # Truncate to last 24 hours if longer (default: 480)
)

# Strip service columns for ML model
inference_df = FormatProcessor.to_data_only_df(unified_df)

# Feed to ML model
predictions = your_model.predict(inference_df)

Split Glucose and Events

from cgm_format import FormatParser, FormatProcessor

# Parse mixed data
unified_df = FormatParser.parse_file("data/cgm_with_events.csv")

# Split into glucose readings and other events (insulin, carbs, etc.)
glucose_df, events_df = FormatProcessor.split_glucose_events(unified_df)

# Process glucose data separately
processor = FormatProcessor()
glucose_df = processor.interpolate_gaps(glucose_df)
unified_df, warnings = processor.prepare_for_inference(glucose_df)

# Strip service columns if needed for ML
inference_df = FormatProcessor.to_data_only_df(unified_df)

# Analyze events separately
insulin_events = events_df.filter(pl.col('event_type').str.contains('INSULIN'))

See USAGE.md for complete inference workflows and examples/usage_example.py for runnable examples.

Unified Format Schema

The library converts all vendor formats to a standardized schema with two types of columns:

Service Columns (Metadata)

Column Type Description
sequence_id Int64 Unique sequence identifier (split by large gaps in glucose data)
original_datetime Datetime Original timestamp before any modifications (preserved for idempotency)
event_type Utf8 Event type (8-char code: EGV_READ, INS_FAST, CARBS_IN, etc.)
quality Int64 Data quality flags (bitwise): 0=GOOD, 1=OUT_OF_RANGE, 2=SENSOR_CALIBRATION, 4=IMPUTATION, 8=TIME_DUPLICATE, 16=SYNCHRONIZATION

Data Columns

Column Type Unit Description
datetime Datetime - Timestamp (ISO 8601)
glucose Float64 mg/dL Blood glucose reading
carbs Float64 g Carbohydrate intake
insulin_slow Float64 u Long-acting insulin dose
insulin_fast Float64 u Short-acting insulin dose
exercise Int64 seconds Exercise duration

See formats/UNIFIED_FORMAT.md for complete specification and event type enums.

Processing Pipeline

The library implements a comprehensive processing pipeline with two main stages:

Parsing (Stages 1-3): CGMParser Interface

Vendor-specific parsing to unified format with automatic sequence detection.

Processing (Stages 4-5): CGMProcessor Interface

Vendor-agnostic operations on unified data. All operations are idempotent through original_datetime preservation and quality flags.

Complete Pipeline Example:

from cgm_format import FormatParser, FormatProcessor

# Stages 1-3: Parse to unified format (sequences automatically assigned)
unified_df = FormatParser.parse_file("data/dexcom_export.csv")

# Stage 4: Interpolate gaps and mark calibration periods
processor = FormatProcessor(expected_interval_minutes=5, small_gap_max_minutes=19)
unified_df = processor.interpolate_gaps(unified_df)

# Optional: Synchronize timestamps to fixed grid
unified_df = processor.synchronize_timestamps(unified_df)

# Stage 5: Prepare for inference with quality checks
inference_df, warnings = processor.prepare_for_inference(
    unified_df,
    minimum_duration_minutes=60,
    maximum_wanted_duration=480
)

# Strip service columns for ML model
data_only = FormatProcessor.to_data_only_df(inference_df)

See interface/PIPELINE.md for complete documentation.

Stage 1: Preprocess Raw Data

Remove BOM marks, encoding artifacts, and normalize text encoding.

text_data = FormatParser.decode_raw_data(raw_bytes)

Stage 2: Format Detection

Automatically detect vendor format from CSV headers.

from cgm_format.interface.cgm_interface import SupportedCGMFormat

format_type = FormatParser.detect_format(text_data)
# Returns: SupportedCGMFormat.DEXCOM, .LIBRE, or .UNIFIED_CGM

Stage 3: Vendor-Specific Parsing

Parse vendor CSV to unified format, handling vendor-specific quirks and automatically detecting sequences:

  • Dexcom: High/Low glucose markers, variable-length rows, metadata rows
  • Libre: Record type filtering, timestamp format variations
  • Sequence detection: Automatically splits data at large gaps (>15 min) in glucose readings
  • Original timestamp preservation: Creates original_datetime column for idempotency
unified_df = FormatParser.parse_to_unified(text_data, format_type)
# ✓ Sequences automatically assigned based on glucose gaps
# ✓ original_datetime preserved for idempotent processing

All stages can be chained with convenience methods:

# Parse from file path (recommended) - sequences auto-detected
unified_df = FormatParser.parse_file("data.csv")

# Parse from base64 string (web APIs)
unified_df = FormatParser.parse_base64(base64_encoded_csv)

# Parse from bytes (lower-level)
unified_df = FormatParser.parse_from_bytes(raw_data)

# Parse from string (manual control)
unified_df = FormatParser.parse_from_string(text_data)

Stage 4: Gap Interpolation and Calibration Marking

The FormatProcessor.interpolate_gaps() method handles data continuity and quality marking:

from cgm_format import FormatProcessor

processor = FormatProcessor(
    expected_interval_minutes=5,    # Normal CGM reading interval
    small_gap_max_minutes=19,       # Max gap size to interpolate (3 intervals + 80% tolerance)
    snap_to_grid=True               # Align interpolated points to synchronization grid (default)
)

# Fill small gaps with linear interpolation
processed_df = processor.interpolate_gaps(unified_df)

What it does:

  1. Gap Detection: Identifies gaps in continuous glucose monitoring data (only glucose events)
  2. Small Gap Interpolation: Fills gaps (>5 min, ≤19 min) with linearly interpolated glucose values
  3. Snap-to-Grid Mode (default): Interpolated points align with synchronization grid
    • Adds both IMPUTATION and SYNCHRONIZATION quality flags
    • Guarantees idempotency: interpolate → syncsync → interpolate
  4. Calibration Period Marking: Called automatically in prepare_for_inference()
    • Marks 24-hour periods after gaps ≥2h45m with SENSOR_CALIBRATION quality flag
  5. Warning Collection: Tracks imputation events via ProcessingWarning.IMPUTATION
  6. Idempotency: Uses original_datetime for gap detection (never modified)

Example - Analyze sequences created:

# Check sequences
sequence_count = processed_df['sequence_id'].n_unique()
print(f"Created {sequence_count} sequences")

# Analyze each sequence
import polars as pl
sequence_info = processed_df.group_by('sequence_id').agg([
    pl.col('datetime').min().alias('start_time'),
    pl.col('datetime').max().alias('end_time'),
    pl.col('datetime').count().alias('num_points'),
])

for row in sequence_info.iter_rows(named=True):
    duration_hours = (row['end_time'] - row['start_time']).total_seconds() / 3600
    print(f"Sequence {row['sequence_id']}: {duration_hours:.1f}h, {row['num_points']} points")

Stage 5: Timestamp Synchronization (Optional)

Align timestamps to fixed-frequency intervals for ML models requiring regular time steps. This is a lossless operation - it keeps ALL source rows and only rounds their timestamps to the grid:

# After interpolate_gaps(), synchronize to exact intervals
synchronized_df = processor.synchronize_timestamps(processed_df)

# Now all timestamps are at exact 5-minute intervals: 10:00:00, 10:05:00, 10:10:00, etc.

What it does:

  1. Rounds timestamps to nearest minute boundary (removes seconds)
  2. Each source row independently maps to its nearest grid point
  3. Marks all rows with SYNCHRONIZATION quality flag
  4. Uses original_datetime for grid calculations (ensures idempotency)
  5. Preserves sequence boundaries (processes each sequence independently)

Idempotency: Multiple applications produce identical results because grid calculations use original_datetime (never modified) and quality flags are additive.

When to use: Time-series models expecting fixed intervals (LSTM, transformers, ARIMA)
When to skip: Models handling irregular timestamps, or when original timing is critical

Stage 6: Inference Preparation

The prepare_for_inference() method performs final quality assurance and returns full UnifiedFormat:

# Prepare final inference-ready data (returns full UnifiedFormat)
unified_df, warnings = processor.prepare_for_inference(
    processed_df,
    minimum_duration_minutes=180,      # Require 3 hours minimum (default: 60)
    maximum_wanted_duration=1440       # Truncate to last 24 hours if longer (default: 480)
)

# Optionally strip service columns for ML models
inference_df = FormatProcessor.to_data_only_df(unified_df)

# Check for quality issues
from cgm_format.interface.cgm_interface import ProcessingWarning

if warnings & ProcessingWarning.TOO_SHORT:
    print("Warning: Sequence shorter than minimum duration")
if warnings & ProcessingWarning.OUT_OF_RANGE:
    print("Warning: Data contains sensor out-of-range errors")
if warnings & ProcessingWarning.IMPUTATION:
    print("Warning: Data contains interpolated values")
if warnings & ProcessingWarning.CALIBRATION:
    print("Warning: Data contains calibration events or post-calibration periods")
if warnings & ProcessingWarning.TIME_DUPLICATES:
    print("Warning: Data contains duplicate timestamps")

What it does:

  1. Validation: Raises ZeroValidInputError if no valid glucose data exists
  2. Sequence Selection: Keeps only the latest valid sequence (most recent timestamps)
    • Tries sequences from most recent, falls back if too short
  3. Truncation: Keeps last N minutes if exceeding maximum_wanted_duration
  4. Time Duplicate Marking: Marks duplicate timestamps with TIME_DUPLICATE quality flag
  5. Calibration Period Marking: Marks 24h periods after gaps ≥2h45m with SENSOR_CALIBRATION flag
  6. Quality Checks: Collects warnings for:
    • TOO_SHORT: sequence duration < minimum_duration_minutes
    • OUT_OF_RANGE: sensor out-of-range errors ("High"/"Low" readings)
    • CALIBRATION: calibration events or 24hr post-calibration gap periods
    • IMPUTATION: imputed/interpolated data
    • TIME_DUPLICATES: non-unique timestamps
  7. Returns: Full UnifiedFormat with all columns (use to_data_only_df() to strip service columns)

Output DataFrame:

# inference_df contains only data columns:
# ['datetime', 'glucose', 'carbs', 'insulin_slow', 'insulin_fast', 'exercise']

# Feed directly to ML model
predictions = your_model.predict(inference_df)

Complete Processor Configuration

from cgm_format import FormatProcessor
from cgm_format.interface.cgm_interface import MINIMUM_DURATION_MINUTES, MAXIMUM_WANTED_DURATION_MINUTES

# Initialize processor with custom intervals
processor = FormatProcessor(
    expected_interval_minutes=5,     # CGM reading interval (5 min for Dexcom, 15 min for Libre)
    small_gap_max_minutes=19,        # Max gap to interpolate (3 intervals + 80% tolerance)
    snap_to_grid=True                # Align interpolated points to sync grid (default, ensures idempotency)
)

# Stage 4: Fill gaps
processed_df = processor.interpolate_gaps(unified_df)

# Stage 5 (Optional): Synchronize to fixed intervals
# synchronized_df = processor.synchronize_timestamps(processed_df)

# Stage 6: Prepare for inference (returns full UnifiedFormat)
unified_df, warnings = processor.prepare_for_inference(
    processed_df,  # or synchronized_df if using Stage 5
    minimum_duration_minutes=MINIMUM_DURATION_MINUTES,        # Default: 60 (1 hour)
    maximum_wanted_duration=MAXIMUM_WANTED_DURATION_MINUTES   # Default: 480 (8 hours)
)

# Optional: Strip service columns for ML models
inference_df = FormatProcessor.to_data_only_df(unified_df)

# Check warnings
if processor.has_warnings():
    all_warnings = processor.get_warnings()
    print(f"Processing collected {len(all_warnings)} warnings")

Advanced Usage

Working with Schemas

from cgm_format.formats.unified import CGM_SCHEMA, UnifiedEventType, Quality

# Get Polars schema
polars_schema = CGM_SCHEMA.get_polars_schema()
data_only_schema = CGM_SCHEMA.get_polars_schema(data_only=True)

# Get column names
all_columns = CGM_SCHEMA.get_column_names()
data_columns = CGM_SCHEMA.get_column_names(data_only=True)

# Get cast expressions for Polars
cast_exprs = CGM_SCHEMA.get_cast_expressions()
df = df.with_columns(cast_exprs)

# Use enums
event = UnifiedEventType.GLUCOSE  # "EGV_READ"
quality = 0                       # GOOD_QUALITY (no flags)

Batch Processing with Inference Preparation

from pathlib import Path
from cgm_format import FormatParser, FormatProcessor
import polars as pl

data_dir = Path("data")
output_dir = Path("data/inference_ready")
output_dir.mkdir(exist_ok=True)

processor = FormatProcessor()
results = []

for csv_file in data_dir.glob("*.csv"):
    try:
        # Parse to unified format
        unified_df = FormatParser.parse_from_file(csv_file)
        
        # Process for inference
        processed_df = processor.interpolate_gaps(unified_df)
        unified_df, warnings = processor.prepare_for_inference(processed_df)
        inference_df = FormatProcessor.to_data_only_df(unified_df)
        
        # Add patient identifier
        patient_id = csv_file.stem
        inference_df = inference_df.with_columns([
            pl.lit(patient_id).alias('patient_id')
        ])
        
        results.append(inference_df)
        
        # Save individual file
        output_file = output_dir / f"{patient_id}_inference.csv"
        FormatParser.to_csv_file(inference_df, str(output_file))
        
        warning_str = f"warnings={warnings.value}" if warnings else "OK"
        print(f"✓ {csv_file.name}: {len(inference_df)} records, {warning_str}")
        
    except Exception as e:
        print(f"✗ Failed {csv_file.name}: {e}")

# Combine all processed data
if results:
    combined_df = pl.concat(results)
    FormatParser.to_csv_file(combined_df, str(output_dir / "combined_inference.csv"))
    print(f"\n✓ Combined {len(results)} files into single dataset")

Format Detection and Validation

from examples.example_schema_usage import run_format_detection_and_validation
from pathlib import Path

# Validate all files in data directory
run_format_detection_and_validation(
    data_dir=Path("data"),
    parsed_dir=Path("data/parsed"),
    output_file=Path("validation_report.txt")
)

This generates a detailed report with:

  • Format detection statistics
  • Frictionless schema validation results (if library installed)
  • Known vendor quirks automatically suppressed

Supported Formats

Dexcom Clarity Export

  • CSV with metadata rows (rows 2-11)
  • Variable-length rows (non-EGV events missing trailing columns)
  • High/Low glucose markers for out-of-range values
  • Event types: EGV, Insulin, Carbs, Exercise
  • Multiple timestamp format variants

FreeStyle Libre

  • CSV with metadata row 1, header row 2
  • Record type filtering (0=glucose, 4=insulin, 5=food)
  • Multiple timestamp format variants
  • Separate rapid/long insulin columns

Unified Format

  • Standardized CSV with header row 1
  • ISO 8601 timestamps
  • Service columns + data columns
  • Validates existing unified format files

Project Structure

cgm_format/
├── src/
│   └── cgm_format/              # Main package
│       ├── __init__.py          # Package exports (FormatParser, FormatProcessor)
│       ├── format_parser.py  # FormatParser implementation (Stages 1-3)
│       ├── format_processor.py  # FormatProcessor implementation (Stages 4-6)
│       ├── interface/           # Abstract interfaces and schema infrastructure
│       │   ├── cgm_interface.py # CGMParser and CGMProcessor interfaces
│       │   ├── schema.py        # Base schema definition system
│       │   └── PIPELINE.md      # Pipeline documentation
│       └── formats/             # Format-specific schemas and definitions
│           ├── unified.py       # Unified format schema and enums
│           ├── unified.json     # Frictionless schema export
│           ├── dexcom.py        # Dexcom format schema and constants
│           ├── dexcom.json      # Frictionless schema for Dexcom
│           ├── libre.py         # Libre format schema and constants
│           ├── libre.json       # Frictionless schema for Libre
│           └── UNIFIED_FORMAT.md # Unified format specification
├── examples/                    # Example scripts
│   ├── usage_example.py         # Runnable usage examples
│   └── example_schema_usage.py  # Format detection & validation examples
├── tests/                       # Pytest test suite
│   ├── test_format_parser.py # Parsing and conversion tests
│   ├── test_format_processor.py # Processing tests
│   └── test_schema.py           # Schema validation tests
├── data/                        # Test data and parsed outputs
│   └── parsed/                  # Converted unified format files
├── pyproject.toml               # Package configuration (hatchling)
├── USAGE.md                     # Complete usage guide for inference
└── README.md                    # This file

Architecture

Two-Layer Interface Design

CGMParser (Stages 1-3): Vendor-specific parsing to unified format

  • decode_raw_data() - Encoding cleanup
  • detect_format() - Format detection
  • parse_to_unified() - Vendor CSV → UnifiedFormat with sequence detection
  • detect_and_assign_sequences() - Glucose-gap-based sequence assignment (automatic)

CGMProcessor (Stages 4-5): Vendor-agnostic operations on unified data

  • interpolate_gaps() - Gap detection and interpolation with calibration marking
  • synchronize_timestamps() - Timestamp alignment to fixed intervals (lossless)
  • mark_calibration_periods() - 24hr post-gap quality marking
  • mark_time_duplicates() - Duplicate timestamp flagging
  • prepare_for_inference() - ML preparation with quality checks and truncation

The current implementation:

  • FormatParser implements the CGMParser interface (Stages 1-3)
  • FormatProcessor implements the CGMProcessor interface (Stages 4-5)

All operations are idempotent through original_datetime preservation and quality flags.

Processing Stages Implementation

Stage 1-3 (FormatParser):

  • BOM removal and encoding normalization
  • Pattern-based format detection (first 15 lines)
  • Vendor-specific CSV parsing with quirk handling
  • Timestamp format probing (handles multiple formats per vendor)
  • Column mapping to unified schema
  • Service field population (sequence_id, event_type, quality, original_datetime)
  • Glucose-only gap detection and sequence assignment (two-pass approach)
  • Schema validation and enforcement

Stage 4 (FormatProcessor.interpolate_gaps):

  • Time difference calculation between consecutive glucose readings
  • Small gap interpolation (> expected_interval, ≤ small_gap_max_minutes)
  • Linear interpolation with snap-to-grid mode for idempotency
  • Imputation row creation with Quality.IMPUTATION + Quality.SYNCHRONIZATION flags
  • Warning collection for imputed data
  • Uses original_datetime for gap detection (ensures idempotency)

Stage 5 (FormatProcessor.synchronize_timestamps):

  • Timestamp rounding to minute boundaries using grid alignment
  • Each source row maps to nearest grid point (lossless operation)
  • Grid calculations use original_datetime (ensures idempotency)
  • All rows marked with Quality.SYNCHRONIZATION flag
  • Preserves sequence boundaries (processes each independently)

Stage 6 (FormatProcessor.prepare_for_inference):

  • Zero-data validation (raises ZeroValidInputError)
  • Latest valid sequence selection with fallback
  • Time duplicate marking with Quality.TIME_DUPLICATE flag
  • Calibration period marking (24h after gaps ≥2h45m) with Quality.SENSOR_CALIBRATION flag
  • Duration verification with TOO_SHORT warning
  • Quality flag detection (OUT_OF_RANGE, SENSOR_CALIBRATION, IMPUTATION, TIME_DUPLICATES)
  • Sequence truncation from beginning (preserves most recent data)
  • Optional service column removal via to_data_only_df()
  • Warning flag aggregation and return

Processing Configuration Parameters

FormatProcessor initialization:

Parameter Default Description Effect
expected_interval_minutes 5 Normal reading interval Grid spacing for synchronization; gap detection baseline
small_gap_max_minutes 19 Max gap to interpolate Gaps > this are not filled; gaps ≤ this are filled with interpolation
snap_to_grid True Align interpolated points to grid When True, ensures idempotency between interpolate and sync operations

Common configurations:

# Dexcom G6/G7 (5-minute readings)
processor = FormatProcessor(expected_interval_minutes=5, small_gap_max_minutes=19)

# FreeStyle Libre (manual scans, typically 15 min)
processor = FormatProcessor(expected_interval_minutes=15, small_gap_max_minutes=57)  # 3 intervals + 80%

# Strict quality (minimal imputation)
processor = FormatProcessor(expected_interval_minutes=5, small_gap_max_minutes=10)

# Lenient (more gap filling for sparse data)
processor = FormatProcessor(expected_interval_minutes=5, small_gap_max_minutes=30)

prepare_for_inference parameters:

Parameter Default Description
minimum_duration_minutes 60 Minimum sequence duration required (warns if shorter)
maximum_wanted_duration 480 Maximum duration to keep (truncates from beginning)

Constants from interface:

from cgm_format.interface.cgm_interface import (
    MINIMUM_DURATION_MINUTES,           # 60 (1 hour)
    MAXIMUM_WANTED_DURATION_MINUTES,    # 480 (8 hours)
    CALIBRATION_GAP_THRESHOLD,          # 9900 seconds (2h45m)
    CALIBRATION_PERIOD_HOURS,           # 24 hours
)

Schema System

Schemas are defined using CGMSchemaDefinition from interface/schema.py:

  • Type-safe: Polars dtypes with strict validation
  • Vendor-specific: Each format has its own schema with quirks documented
  • Validation modes: Validate (raise on mismatch) or enforce (cast and fix)
  • Frictionless export: Auto-generate validation schemas
  • Dialect support: CSV parsing hints (header rows, comment rows, etc.)
  • Stable sorting: Deterministic row ordering for idempotency

Configuration:

from cgm_format.format_parser import FormatParser
from cgm_format.format_processor import FormatProcessor
from cgm_format.interface.cgm_interface import ValidationMethod

# Parser validation (class variable)
FormatParser.validation_mode = ValidationMethod.INPUT  # Validate inputs (default)
FormatParser.validation_mode = ValidationMethod.INPUT_FORCED  # Enforce schema on inputs

# Processor validation (instance parameter)
processor = FormatProcessor(validation_mode=ValidationMethod.INPUT)

Schema usage:

from cgm_format.formats.unified import CGM_SCHEMA

# Validate DataFrame matches schema (raises on mismatch)
validated_df = CGM_SCHEMA.validate_dataframe(df, enforce=False)

# Enforce schema (add missing columns, cast types, reorder, sort)
enforced_df = CGM_SCHEMA.validate_dataframe(df, enforce=True)

# Get stable sort keys for deterministic ordering
sort_keys = CGM_SCHEMA.get_stable_sort_keys()
df = df.sort(sort_keys)

Error Handling

Exceptions

Exception Base Description
UnknownFormatError ValueError Format cannot be detected
MalformedDataError ValueError CSV parsing or conversion failed
MissingColumnError MalformedDataError Required column missing from DataFrame
ExtraColumnError MalformedDataError Unexpected column present in DataFrame
ColumnOrderError MalformedDataError Columns not in correct schema order
ColumnTypeError MalformedDataError Column type doesn't match schema
ZeroValidInputError ValueError No valid data points found

Processing Warnings

The FormatProcessor collects quality warnings during processing:

Warning Flag Description Triggered By
ProcessingWarning.TOO_SHORT Sequence duration < minimum_duration_minutes prepare_for_inference()
ProcessingWarning.OUT_OF_RANGE Data contains OUT_OF_RANGE quality flag (sensor errors) prepare_for_inference()
ProcessingWarning.CALIBRATION Data contains calibration events or SENSOR_CALIBRATION quality flag prepare_for_inference()
ProcessingWarning.IMPUTATION Data contains IMPUTATION quality flag (interpolated data) interpolate_gaps()
ProcessingWarning.TIME_DUPLICATES Data contains TIME_DUPLICATE quality flag prepare_for_inference()

Usage:

processor = FormatProcessor()
processed_df = processor.interpolate_gaps(unified_df)
inference_df, warnings = processor.prepare_for_inference(processed_df)

# Check individual warnings using bitwise AND
if warnings & ProcessingWarning.OUT_OF_RANGE:
    print("Sensor out-of-range errors detected")
if warnings & ProcessingWarning.CALIBRATION:
    print("Calibration events or post-calibration periods present")

# Get all warnings as list
all_warnings = processor.get_warnings()
print(f"Collected {len(all_warnings)} warnings")

# Check if any warnings exist
if processor.has_warnings():
    print("Processing completed with warnings")

Testing

The library has comprehensive test coverage with real data (no mocking):

# Run all tests
uv run pytest tests/

# Run specific test file
uv run pytest tests/test_format_processor.py -v

# Run idempotency tests
uv run pytest tests/test_idempotency.py -v

# Generate validation report
uv run python examples/example_schema_usage.py

# Run usage examples with real data
uv run python examples/usage_example.py

Test Coverage:

  • test_format_detection_validation.py - Format detection, Frictionless schema validation
  • test_integration_pipeline.py - Full end-to-end pipeline on real data (no mocking)
  • test_format_processor.py - Processor implementation: sync, interpolation, inference prep
  • test_format_converter.py - Parser: detection, parsing, roundtrip, sequence detection
  • test_roundtrip_datetime.py - Datetime type preservation through conversions
  • test_idempotency.py - Idempotency and commutativity of operations
  • test_schema.py - Schema validation and Frictionless conversion
  • test_utils.py - Utility methods (split_glucose_events, to_data_only_df)

All tests verify:

  • Data integrity and consistency
  • Timestamp ordering and idempotency
  • Lossless operations (no data loss)
  • Schema compliance
  • Error handling

See tests/README.md for detailed test documentation.

Development

Regenerating Schema JSON Files

After modifying schema definitions:

# Regenerate unified.json
python3 -c "from cgm_format.formats.unified import regenerate_schema_json; regenerate_schema_json()"

# Regenerate dexcom.json
python3 -c "from cgm_format.formats.dexcom import regenerate_schema_json; regenerate_schema_json()"

# Regenerate libre.json
python3 -c "from cgm_format.formats.libre import regenerate_schema_json; regenerate_schema_json()"

Adding New Vendor Formats

  1. Create schema in src/cgm_format/formats/your_vendor.py using CGMSchemaDefinition
  2. Add format to SupportedCGMFormat enum in src/cgm_format/interface/cgm_interface.py
  3. Add detection patterns and implement parsing in src/cgm_format/format_parser.py
  4. Add tests in tests/test_format_parser.py

Requirements

  • Python 3.10+
  • polars 1.34.0+

Optional:

  • pandas 2.3.3+ (compatibility layer)
  • pyarrow 21.0.0+ (pandas conversion)
  • frictionless 5.18.1+ (schema validation)
  • pytest 8.0.0+ (testing)

Documentation

License

See LICENSE file.

About

Converter from different popular CGM data export formats and datasets to a unified format suitable for ML training and inference

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages