Gratatouille is an opinionated framework to build Gradle plugins. Write Kotlin functions and the Gratatouille KSP processor generates tasks, workers, and wiring code for you.
When used in classloader isolation mode, Gratatouille enforces a clear separation between your plugin implementation (tasks) and your plugin wiring (plugin) making your plugin immune to classloader issues π‘οΈ
Key Features:
- Tasks Generation
- Comprehensive input/output types
- Non overlapping task outputs by default
- Build cache by default
- Easy documentation
- Parallel execution by default
- Compile-time task wiring
- Plugin descriptors and markers without java-gradle-plugin
- Classloader isolation (optional)
- kotlinx serialization support (experimental)
Check out the Apollo Faker Gradle Plugin for a real life example or test-app for integration tests.
Gratatouille also uses Gratatouille to build its plugin, check gratatouille-gradle-plugin/build.gradle.kts for more details.
Apply the com.gradleup.gratatouille
plugin:
plugins {
id("org.jetbrains.kotlin.jvm")
// KSP is required for code generation
id("com.google.devtools.ksp")
// No need to add the 'java-gradle-plugin' plugin.
// Add the Gratatouille plugin
id("com.gradleup.gratatouille").version("0.0.7")
}
gratatouille {
// Configure the plugin marker
pluginMarker("com.example.myplugin")
// Enable code generation
codeGeneration()
}
Define your task action using @GTask
:
@GTask
internal fun prepareIngredients(persons: Int, ingredients: GOutputFile) {
ingrediens.writeText("""
{
"tomatoes": ${persons * 0.75}.roundToInt(),
"zucchinis": ${persons * 0.3}.roundToInt(),
"eggplants": ${persons * 0.3}.roundToInt()
}
""".trimIndent())
}
Gratatouille automatically maps function parameters to Gradle inputs and outputs(more on outputs below).
Gratatouille generates entry points, tasks, workers and the rest of the owl (someone please send the link to that nice Gradle meme, I can't find it anymore).
Generated code
internal fun Project.registerPrepareIngredientsTask(
taskName: String = "prepareIngredients",
taskDescription: String? = null,
taskGroup: String? = null,
persons: Provider<Int>,
): TaskProvider<PrepareIngredientsTask> {
val configuration = this@registerPrepareIngredientsTask.configurations.detachedConfiguration()
configuration.dependencies.add(dependencies.create("sample-plugin:implementation:0.0.1"))
return tasks.register(taskName,PrepareIngredientsTask::class.java) {
it.description = taskDescription
it.group = taskGroup
it.classpath.from(configuration)
// infrastructure
// inputs
it.persons.set(persons)
// outputs
it.outputFile.set(this@registerPrepareIngredientsTask.layout.buildDirectory.file("gtask/${taskName}/ingredients"))
}
}
@CacheableTask
internal abstract class PrepareIngredientsTask : DefaultTask() {
@get:Classpath
public abstract val classpath: ConfigurableFileCollection
@get:Input
public abstract val persons: Property<Int>
@get:OutputFile
public abstract val outputFile: RegularFileProperty
@Inject
public abstract fun getWorkerExecutor(): WorkerExecutor
private fun <T> T.isolate(): T {
@kotlin.Suppress("UNCHECKED_CAST")
when (this) {
is Set<*> -> {
return this.map { it.isolate() }.toSet() as T
}
is List<*> -> {
return this.map { it.isolate() } as T
}
is Map<*, *> -> {
return entries.map { it.key.isolate() to it.value.isolate() }.toMap() as T
}
else -> {
return this
}
}
}
@TaskAction
public fun taskAction() {
getWorkerExecutor().noIsolation().submit(PrepareIngredientsWorkAction::class.java) {
it.classpath = classpath.files.isolate()
it.persons = persons.get().isolate()
it.ingredients = ingredients.asFile.get().isolate()
}
}
}
private interface PrepareIngredientsWorkParameters : WorkParameters {
public var classpath: Set<File>
public var persons: Int
public var ingredients: File
}
private abstract class PrepareIngredientsWorkAction : WorkAction<PrepareIngredientsWorkParameters> {
override fun execute() {
with(parameters) {
URLClassLoader(
classpath.map { it.toURI().toURL() }.toTypedArray(),
ClassLoader.getPlatformClassLoader()
).loadClass("recipes.PrepareIngredientsEntryPoint")
.declaredMethods.single()
.invoke(
null,
persons,
ingredients,
)
}
}
}
public class PrepareIngredientsEntryPoint {
public companion object {
@JvmStatic
public fun run(persons: Int, ingredients: File) {
prepareIngredients(
persons = persons,
ingredients = ingredients,
)
}
}
}
Use @GPlugin
to create a plugin and call Project.register${TaskAction}Task()
to register the task:
// GPlugin generates a plugin and descriptor automatically
@GPlugin(id = "com.example.myplugin")
fun myPlugin(project: Project) {
val extension = project.extensions.create("recipes", RecipesExtension::class.java)
// Register your "PrepareIngredients" task
val prepareIngredients = project.registerPrepareIngredientsTask(
persons = extension.persons
// no need to set the outputs, they are configured automatically
)
// Register other tasks
project.registerCookTask(
recipe = extension.recipe,
// Wire tasks together
ingredients = prepareIngredients.flatMap { it.ingredients }
)
}
No need to implement DefaultTask
, no risk of forgetting @Cacheable
, etc... Gratatouille provides good defaults making it easier to write plugins.
Your code is modeled as functions taking inputs and generating outputs.
No need for stateful properties or classes. Nullable parameters are generated as optional task properties. Calls to Provider.get()
or Provider.orNull
are automated.
Inputs:
- Any type annotated with
@Serializable
(serialized to a File) - Kotlin
Int
,Boolean
,Float
,Double
,String
- Kotlin
Set
,List
,Map
- Single File using the
GInputFile
typealias - FileCollection using the
GInputFiles
typealias - Directory using the
GInputDirectory
typealias
Outputs:
- Single File using the
GOutputFile
typealias - Directory using the
GOutputDirectory
typealias
Gratatouille allocates paths for output files and directories automatically. Each output gets a dedicated filesystem location at "build/gtask/${taskName}/${outputName}"
.
This way:
- you don't have to think about what path to use.
- the outputs are consistent and discoverable.
- issues like #26091 are avoided by construction.
If your function has a single return value, Gratatouille uses outputFile
as output name.
If your function needs multiple return values, wrap them in a non-serializable class.
If you need to control the output location of an output, you can do so using @GManuallyWired
and using GOutputFile
/GOutputDirectory
as parameters.
In your implementation:
@GTask
internal fun cook(
recipe: GInputFile,
ingredients: Ingredients,
// ratatouille is exposed in registerCookTask(outputFile) so you can configure it
@GManuallyWired ratatouille: GOutputFile,
// leftovers is set to "build/gtask/cook/leftovers"
leftovers: GOutputFile,
) {
ratatouille.writeText(/* cook here! */)
}
In your plugin:
project.registerCookTask(
recipe = extension.recipe,
ingredients = prepareIngredients.flatMap { it.outputFile },
// Set outputFile location explicitly
ratatouille = project.layout.buildDirectory.file("ratatouille")
// No need to set lefovers
)
@CacheableTask
is added by default. All input files use PathSensitivity.RELATIVE
making your tasks relocatable.
@GTask
takes a description
and a group
argument making it easy to colocate your documentation with your implementation:
@GTask(
description = "cooks the most delicious ratatouille with the help of the tiniest chef",
group = "recipes"
)
internal fun cook(
recipe: GInputFile,
ingredients: Ingredients,
outputFile: GOutputFile
) {
TODO()
}
By default, Gradle tasks execute serially in a single project (unless using the configuration cache).
Because your task actions are Kotlin functions, no state is shared, making them perfect candidates for parallelization.
Gratatouille uses the Worker API to allow parallel execution making your build faster overall. Use org.gradle.workers.max
to control the maximum number of workers.
Finally, Gratatouille encourages exposing extensions to users instead of task classes directly. All generated code is generated as internal
. This makes it easier to have some inputs user configurable while some others are an implementation details and more generally makes it easier to evolve the public API of your plugin.
When a task has a high number of inputs, it can become hard to track which ones have been wired and which ones haven't. By using a central registration point, Gratatouille enforces at build time that all inputs/outputs have been properly wired.
In order to map a plugin id to a jar file and a specific implementation class, Gradle uses plugin markers and descriptors.
The markers and descriptors are typically added by the java-gradle-plugin
plugin. This plugin also adds the gradleApi()
dependency as an api
dependency to your project, which is rarely needed.
For simplicity, Gratatouille, generates plugin descriptors automatically from the @GPlugin
and GExtension
annotations.
For markers, Gratatouille exposes a simple function:
gratatouille {
// Configure the plugin marker
pluginMarker("com.example.myplugin")
}
dependencies {
// You can add use the Gradle API of your choice here
compileOnly("dev.gradleplugins:gradle-api:8.0")
}
Gradle uses multiple classloaders, and it's notoriously really hard to understand where a given class is loaded from.
Especially, buildSrc
/build-logic
dependencies leak in the main classpath and override any dependencies from other plugin without conflict resolution. There are multiple workarounds such as declaring all plugins in buildSrc
or in the top level build.gradle[.kts]
file but the situation is confusing to Gradle newcomers and hard to debug.
To guard against those issues, Gratatouille provides a classloader isolation mode where your tasks use a separate classloader.
This means your tasks can depend on popular dependencies such as the Kotlin stdlib, KotlinPoet or ASM without risking conflicts with other plugins or the Gradle classpath itself.
For classloader isolation to work, your plugin needs 2 projects:
- The tasks project is where the task actions are defined and the work is done. This project can add dependencies.
- The plugin project contains the glue code and Gradle API that calls the tasks project through reflection. This project must not add dependencies besides the compileOnly Gradle API.
Create a gradle-tasks
project for your plugin tasks and apply the com.gradleup.gratatouille
plugin:
// implementation/build.gradle.kts
plugins {
id("org.jetbrains.kotlin.jvm")
id("com.google.devtools.ksp")
id("com.gradleup.gratatouille.implementation").version("0.0.7")
}
dependencies {
// Add dependencies needed to do your task work
implementation("com.squareup:kotlinpoet:1.14.2")
implementation("org.ow2.asm:asm-commons:9.6")
// do **not** add gradleApi() here
}
gratatouille {
// Enable code generation
codeGeneration {
// Enables classloader isolation
classLoaderIsolation()
}
}
Write your task actions as top-level Kotlin functions annotated with @GTask
:
@GTask
internal fun prepareIngredients(persons: Int, ingredients: GOutputFile) {
ingrediens.writeText("""
{
"tomatoes": ${persons * 0.75}.roundToInt(),
"zucchinis": ${persons * 0.3}.roundToInt(),
"eggplants": ${persons * 0.3}.roundToInt()
}
""".trimIndent())
}
When using this mode, the plugin wiring code is generated as resources that are included by the gradle-plugin
project.
To use the generated code in your plugin, create an gradle-plugin
project next to your gradle-tasks
project.
Important
By using two different projects, Gratatouille ensures that Gradle classes do not leak in your plugin implementation and vice-versa.
Apply the com.gradleup.gratatouille
plugin in your api
project:
// gradle-plugin/build.gradle.kts
plugins {
id("com.gradleup.gratatouille").version("0.0.7")
}
gratatouille {
// Configure the plugin marker
pluginMarker("com.example.myplugin")
// Optional: you may still use code generation for `@GTask` and `GExtension` helpers
codeGeneration()
}
dependencies {
// Add your implementation project to the "gratatouille" configuration.
// This does not add `:implementation` to your plugin classpath.
// Instead, the generated code uses reflection and a separate classloader to run
// your implementation
gratatouille(project(":implementation"))
// Add the version of Gradle you want to compile against
compileOnly("dev.gradleplugins:gradle-api:8.0")
}
In your plugin code, use Project.register${TaskAction}Task()
to register the task
Gratatouille has builtin support for kotlinx.serialization. Models are serialized and deserialized as needed.
To opt-in support for kotlinx.serialization, add enableKotlinxSerialization.set(true)
to your configuration:
gratatouille {
enableKotlinxSerialization.set(true)
codeGeneration()
// ...
}
With kotlinx.serialization
support, you can write your funtions as pure functions and the output will be serialized on the fly:
@GTask
internal fun prepareIngredients(persons: Int): Ingredients {
return Ingredients(
tomatoes = (persons * 0.75).roundToInt(),
zucchinis = (persons * 0.3).roundToInt(),
eggplants = (persons * 0.3).roundToInt(),
)
}
// kotlinx.serialization is supported out of the box
@Serializable
internal data class Ingredients(
val tomatoes: Int,
val zucchinis: Int,
val eggplants: Int,
)