Skip to content

HaiwangYu/Pytorch-UNet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

92 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pytorch-UNet For LArTPC Signal Processing

Original Repository: here

Example usage in train.sh and predict.sh

install

use conda

prerequisite: conda https://docs.anaconda.com/free/anaconda/install/linux/

use environment.yml

conda env create -f environment.yml

manually

conda create --name pt110 python=3.9 numpy
conda activate pt110
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html
pip install matplotlib
pip install h5py

use pip

python -m venv venv
source venv/bin/activate
pip install -r requirements.txt -f https://download.pytorch.org/whl/cu111/torch_stable.html

talks:

notes

h5dump-shared -n data/g4-rec-r9.h5
./scripts/h5plot.py data/g4-rec-r9.h5 /100/frame_loose_lf0
./scripts/h5plot.py data/g4-rec-r9.h5 /100/frame_mp3_roi0
./scripts/h5plot.py data/g4-rec-r9.h5 /100/frame_mp2_roi0
./scripts/h5plot.py data/g4-tru-r9.h5 /103/frame_ductor0
./scripts/h5plot.py data/g4-rec-r9.h5 /103/frame_gauss0
./train3.sh
python plot_epoch.py 1
./to-ts.py -m test0/CP49.pth

ts to pth

./to-pth.py -m ts-model/unet-l23-cosmic500-e50.ts -o pth-model/unet-l23-cosmic500-e50.pth
./to-pth.py -m ts-model/nestedunet-l23-cosmic500-e50.ts -o pth-model/nestedunet-l23-cosmic500-e50.pth -t nestedunet
./to-pth.py -m ts-model/unet-lt-cosmic500-e50.ts -o pth-model/unet-lt-cosmic500-e50.pth -i 2

pth to ts

./to-ts.py -m pth-model/unet-l23-cosmic500-e50.pth -o ts-model-2.3/unet-l23-cosmic500-e50.ts
./to-ts.py -m pth-model/nestedunet-l23-cosmic500-e50.pth -o ts-model-2.3/nestedunet-l23-cosmic500-e50.ts -t nestedunet
./to-ts.py -m pth-model/unet-lt-cosmic500-e50.pth -o ts-model-2.3/unet-lt-cosmic500-e50.ts -i 2

About

Pytorch-UNet For LArTPC Signal Processing

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 86.2%
  • C++ 7.0%
  • Jupyter Notebook 3.7%
  • Shell 2.8%
  • CMake 0.3%