Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 28 additions & 42 deletions core/asr_backend/elevenlabs_asr.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,40 +30,34 @@
# ----------------------------

SPLIT_GAP = 1
def elev2whisper(elev_json, word_level_timestamp = False):
def elev2whisper(elev_json, word_level_timestamp = True):
segments = []
current_segment = None
words = elev_json.get("words", [])
if not words:
return {"segments": []}

segments, seg = [], {
"text": "", # accumulated text
"start": words[0]["start"], # seg start time
"end": words[0]["end"], # seg end time (updates)
"speaker_id": words[0]["speaker_id"],
"words": [] # optional per‑word info
}

for prev, nxt in zip(words, words[1:] + [None]): # pairwise with sentinel
seg["text"] += prev["text"]
seg["end"] = prev["end"]
if word_level_timestamp:
seg["words"].append({"text": prev["text"], "start": prev["start"], "end": prev["end"]})
# decide whether to break the segment
if nxt is None or (nxt["start"] - prev["end"] > SPLIT_GAP) or (nxt["speaker_id"] != seg["speaker_id"]):
seg["text"] = seg["text"].strip()
if not word_level_timestamp:
seg.pop("words")
segments.append(seg)
if nxt is not None: # seed next segment
seg = {
"text": "",
"start": nxt["start"],
"end": nxt["end"],
"speaker_id": nxt["speaker_id"],
"words": []
}

for word in elev_json.get('words', []):
if word['text']== ' ':
continue
# Process timestamps
start = word['start']
end = word['end']
text = word['text']

# Update or create segment
if not current_segment:
current_segment = {'words': []}

# Add word to current segment
current_segment['words'].append({'word': text, 'start': start, 'end': end})

if current_segment:
segments.append(current_segment)

return {"segments": segments}


def transcribe_audio_elevenlabs(raw_audio_path, vocal_audio_path, start = None, end = None):
rprint(f"[cyan]🎤 Processing audio transcription, file path: {vocal_audio_path}[/cyan]")
LOG_FILE = f"output/log/elevenlabs_transcribe_{start}_{end}.json"
Expand Down Expand Up @@ -99,7 +93,7 @@ def transcribe_audio_elevenlabs(raw_audio_path, vocal_audio_path, start = None,
"timestamps_granularity": "word",
"language_code": load_key("whisper.language"),
"diarize": True,
"num_speakers": None,
"num_speakers": 1,
"tag_audio_events": False
}

Expand All @@ -114,20 +108,12 @@ def transcribe_audio_elevenlabs(raw_audio_path, vocal_audio_path, start = None,
# save detected language
detected_language = iso_639_2_to_1.get(result["language_code"], result["language_code"])
update_key("whisper.detected_language", detected_language)

# Adjust timestamps for all words by adding the start time
if start is not None and 'words' in result:
for word in result['words']:
if 'start' in word:
word['start'] += start
if 'end' in word:
word['end'] += start

rprint(f"[green]✓ Transcription completed in {time.time() - start_time:.2f} seconds[/green]")
parsed_result = elev2whisper(result)
os.makedirs(os.path.dirname(LOG_FILE), exist_ok=True)
with open(LOG_FILE, "w", encoding="utf-8") as f:
json.dump(parsed_result, f, indent=4, ensure_ascii=False)
# os.makedirs(os.path.dirname(LOG_FILE), exist_ok=True)
# with open(LOG_FILE, "w", encoding="utf-8") as f:
# json.dump(parsed_result, f, indent=4, ensure_ascii=False)
return parsed_result
finally:
# Clean up the temporary file
Expand All @@ -137,7 +123,7 @@ def transcribe_audio_elevenlabs(raw_audio_path, vocal_audio_path, start = None,
if __name__ == "__main__":
file_path = input("Enter local audio file path (mp3 format): ")
language = input("Enter language code for transcription (en or zh or other...): ")
result = transcribe_audio_elevenlabs(file_path, language_code=language)
result = transcribe_audio_elevenlabs(file_path, file_path)
print(result)

# Save result to file
Expand Down