Empower your Godot projects with the power of machine learning!
MLGodotKit is a C++ GDExtension for Godot, enabling seamless integration of AI-driven features into your games and applications. With support for adaptive behaviors and real-time decision-making, it’s designed to inspire innovation and enhance gameplay.
- Data Science Tooling: Tools for preprocessing, analyzing, and visualizing data directly in Godot.
- Deep Learning Integration: Simplified nodes for building and deploying neural networks.
- Cross-Platform Compatibility: Fully supported on Windows, Linux, and macOS.
Here are quick examples of how to use the three core models in MLGodotKit:
All models are GDExtension nodes and can be used directly in any Godot scene or script.
@onready var lr_model = LRNode.new()
func _ready():
lr_model.set_learning_rate(0.01)
lr_model.initialize(1)
# Simple linear dataset: y = 3x + 5
var inputs = [[1], [2], [3]]
var targets = [[8], [11], [14]]
lr_model.train(inputs, targets, 1000)
var prediction = lr_model.predict([4])
print("Predicted y for x=4:", prediction)
@onready var tree = DTreeNode.new()
func _ready():
tree.set_max_depth(5)
tree.fit([[1], [2], [3], [10], [11], [12]], [0, 0, 0, 1, 1, 1])
var result = tree.predict([[2], [11]])
print("Predictions:", result) # [0, 1]
@onready var nn = NNNode.new()
func _ready():
nn.set_learning_rate(0.1)
nn.add_layer(2, 4, "relu")
nn.add_layer(4, 1, "sigmoid")
var inputs = [[0,0], [0,1], [1,0], [1,1]]
var targets = [[0], [1], [1], [0]] # XOR logic
for i in range(5000):
for j in range(inputs.size()):
var y_pred = nn.forward([inputs[j]])[0]
var error = y_pred - targets[j][0]
nn.backward([[2.0 * error]])
print("Test XOR:")
for i in range(inputs.size()):
var output = nn.forward([inputs[i]])
print("Input:", inputs[i], " Predicted:", output, "Expected:", targets[i])
MLGodotKit is a work in progress, with ongoing development focused on core functionality and cross-platform support.
Built on the powerful Eigen C++ library.