Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added key value extraction evaluation and example with images #1529

Merged
merged 14 commits into from
Feb 4, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 14 additions & 1 deletion docs/docs/examples.rst
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ Classifical f1_micro, f1_macro, and per-entity-type f1 metrics are reported.

`Example code <https://github.com/IBM/unitxt/blob/main/examples/ner_evaluation.py>`__

Related documentation: :ref:`Add new dataset tutorial <adding_dataset>`, :ref:`Open NER task in catalog <catalog.tasks.ner.all_entity_types>`, :ref:`Inference Engines <inference>`.
Related documentation: :ref:`Add new dataset tutorial <adding_dataset>`, :ref:`NER task in catalog <catalog.tasks.ner.all_entity_types>`, :ref:`Inference Engines <inference>`.

Evaluation usecases
-----------------------
Expand Down Expand Up @@ -244,6 +244,19 @@ Evaluate Image-Text to Text Models with different templates and explore the sens

Related documentation: :ref:`Multi-Modality Guide <multi_modality>`, :ref:`Inference Engines <inference>`.

Evaluate Image Key Value Extraction task
+++++++++++++++++++++++++++++++++++++++++

This example demonstrates how to evaluate an image key value extraction task. It renders several images of given texts and then prompts a vision model to extract key value pairs from the images.
This requires the vision model to understand the texts in the images, and extract relevant values. It computes overall F1 scores and F1 scores for each of the keys based on ground truth key value pairs.
Note the same code can be used for textual key value extraction, just py providing input texts instead of input images.

`Example code <https://github.com/IBM/unitxt/blob/main/examples/key_value_extraction_evaluation.py>`__

Related documentation: :ref:`Key Value Extraction task in catalog <catalog.tasks.key_value_extraction>`, :ref:`Inference Engines <inference>`.
:ref:`Multi-Modality Guide <multi_modality>`, :ref:`Inference Engines <inference>`.


Advanced topics
----------------------------

Expand Down
73 changes: 73 additions & 0 deletions examples/key_value_extraction_evaluation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
import json

from unitxt import get_logger
from unitxt.api import create_dataset, evaluate
from unitxt.inference import (
CrossProviderInferenceEngine,
)

logger = get_logger()
keys = ["Worker", "LivesIn", "WorksAt"]


def text_to_image(text: str):
"""Return a image with the input text render in it."""
from PIL import Image, ImageDraw, ImageFont

bg_color = (255, 255, 255)
text_color = (0, 0, 0)
font_size = 10
font = ImageFont.load_default(size=font_size)

img = Image.new("RGB", (1, 1), bg_color)

# Get dimensions of the text
# text_width, text_height = font.getsize_multiline(value)

# Create a new image with appropriate size
img = Image.new("RGB", (1000, 1000), bg_color)
draw = ImageDraw.Draw(img)

# Draw the text on the image
draw.multiline_text((0, 0), text, fill=text_color, font=font)
return {"image": img, "format": "png"}


test_set = [
{
"input": text_to_image("John lives in Texas."),
"keys": keys,
"key_value_pairs_answer": {"Worker": "John", "LivesIn": "Texas"},
},
{
"input": text_to_image("Phil works at Apple and eats an apple."),
"keys": keys,
"key_value_pairs_answer": {"Worker": "Phil", "WorksAt": "Apple"},
},
]


dataset = create_dataset(
task="tasks.key_value_extraction",
template="templates.key_value_extraction.extract_in_json_format",
test_set=test_set,
split="test",
format="formats.chat_api",
)

model = CrossProviderInferenceEngine(
model="llama-3-2-11b-vision-instruct", provider="watsonx"
)

predictions = model(dataset)
results = evaluate(predictions=predictions, data=dataset)

print("Example prompt:")

print(json.dumps(results.instance_scores[0]["source"], indent=4))

print("Instance Results:")
print(results.instance_scores)

print("Global Results:")
print(results.global_scores.summary)
49 changes: 48 additions & 1 deletion prepare/metrics/custom_f1.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
from unitxt import add_to_catalog
from unitxt.metrics import NER
from unitxt.metrics import NER, KeyValueExtraction
from unitxt.test_utils.metrics import test_metric

metric = NER()
Expand Down Expand Up @@ -434,3 +434,50 @@ class NERWithoutClassReporting(NER):
)

add_to_catalog(metric, "metrics.ner", overwrite=True)


metric = KeyValueExtraction()

predictions = [
[("key1", "value1"), ("key2", "value2"), ("unknown_key", "unknown_value")]
]

references = [[[("key1", "value1"), ("key2", "value3")]]]
#
instance_targets = [
{
"f1_key1": 1.0,
"f1_key2": 0.0,
"f1_macro": 0.5,
"f1_micro": 0.4,
"in_classes_support": 0.67,
"precision_macro": 0.5,
"precision_micro": 0.33,
"recall_macro": 0.5,
"recall_micro": 0.5,
"score": 0.4,
"score_name": "f1_micro",
}
]
global_target = {
"f1_key1": 1.0,
"f1_key2": 0.0,
"f1_macro": 0.5,
"in_classes_support": 0.67,
"f1_micro": 0.4,
"recall_micro": 0.5,
"recall_macro": 0.5,
"precision_micro": 0.33,
"precision_macro": 0.5,
"score": 0.4,
"score_name": "f1_micro",
"num_of_instances": 1,
}
outputs = test_metric(
metric=metric,
predictions=predictions,
references=references,
instance_targets=instance_targets,
global_target=global_target,
)
add_to_catalog(metric, "metrics.key_value_extraction", overwrite=True)
17 changes: 17 additions & 0 deletions prepare/tasks/key_value_extraction.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
from typing import Any, Dict, List, Tuple

from unitxt.blocks import Task
from unitxt.catalog import add_to_catalog

add_to_catalog(
Task(
__description__="This is a key value extraction task, where a specific list of possible 'keys' need to be extracted from the input. The ground truth is provided key-value pairs in the form of the dictionary. The results are evaluating using F1 score metric, that expects the predictions to be converted into a list of (key,value) pairs. ",
input_fields={"input": Any, "keys": List[str]},
reference_fields={"key_value_pairs_answer": Dict[str, str]},
prediction_type=List[Tuple[str, str]],
metrics=["metrics.key_value_extraction"],
default_template="templates.key_value_extraction.extract_in_json_format",
),
"tasks.key_value_extraction",
overwrite=True,
)
17 changes: 17 additions & 0 deletions prepare/templates/key_value_extraction/templates.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
from unitxt import add_to_catalog
from unitxt.processors import PostProcess
from unitxt.struct_data_operators import JsonStrToListOfKeyValuePairs
from unitxt.templates import (
InputOutputTemplate,
)

add_to_catalog(
InputOutputTemplate(
instruction="Extract the key value pairs from the input. Return a valid json object with the following keys: {keys}. Return only the json representation, no additional text or explanations.",
input_format="{input}",
output_format="{key_value_pairs_answer}",
postprocessors=[PostProcess(JsonStrToListOfKeyValuePairs())],
),
"templates.key_value_extraction.extract_in_json_format",
overwrite=True,
)
3 changes: 3 additions & 0 deletions src/unitxt/catalog/metrics/key_value_extraction.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
{
"__type__": "key_value_extraction"
}
16 changes: 16 additions & 0 deletions src/unitxt/catalog/tasks/key_value_extraction.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
{
"__type__": "task",
"__description__": "This is a key value extraction task, where a specific list of possible 'keys' need to be extracted from the input. The ground truth is provided key-value pairs in the form of the dictionary. The results are evaluating using F1 score metric, that expects the predictions to be converted into a list of (key,value) pairs. ",
"input_fields": {
"input": "Any",
"keys": "List[str]"
},
"reference_fields": {
"key_value_pairs_answer": "Dict[str, str]"
},
"prediction_type": "List[Tuple[str, str]]",
"metrics": [
"metrics.key_value_extraction"
],
"default_template": "templates.key_value_extraction.extract_in_json_format"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
{
"__type__": "input_output_template",
"instruction": "Extract the key value pairs from the input. Return a valid json object with the following keys: {keys}. Return only the json representation, no additional text or explanations.",
"input_format": "{input}",
"output_format": "{key_value_pairs_answer}",
"postprocessors": [
{
"__type__": "post_process",
"operator": {
"__type__": "json_str_to_list_of_key_value_pairs"
}
}
]
}
14 changes: 14 additions & 0 deletions src/unitxt/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -3355,6 +3355,8 @@ def add_macro_scores(self, f1_result, recall_result, precision_result, result):


class NER(CustomF1):
"""F1 Metrics that receives as input a list of (Entity,EntityType) pairs."""

prediction_type = List[Tuple[str, str]]

def get_element_group(self, element, additional_input):
Expand All @@ -3364,6 +3366,18 @@ def get_element_representation(self, element, additional_input):
return str(element)


class KeyValueExtraction(CustomF1):
"""F1 Metrics that receives as input a list of (Key,Value) pairs."""

prediction_type = List[Tuple[str, str]]

def get_element_group(self, element, additional_input):
return element[0]

def get_element_representation(self, element, additional_input):
return str(element)


def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""

Expand Down
21 changes: 21 additions & 0 deletions src/unitxt/struct_data_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
{"key1": "value1", "key2": value2, "key3": "value3"}
"""

import ast
import json
import random
from abc import ABC, abstractmethod
Expand All @@ -31,12 +32,14 @@
Dict,
List,
Optional,
Tuple,
)

import pandas as pd

from .augmentors import TypeDependentAugmentor
from .dict_utils import dict_get
from .error_utils import UnitxtWarning
from .operators import FieldOperator, InstanceOperator
from .random_utils import new_random_generator
from .serializers import ImageSerializer, TableSerializer
Expand Down Expand Up @@ -1019,3 +1022,21 @@ def process_value(self, table: Any) -> Any:
random.shuffle(shuffled_header)

return {"header": shuffled_header, "rows": table["rows"]}


class JsonStrToListOfKeyValuePairs(FieldOperator):
def process_value(self, text: str) -> List[Tuple[str, str]]:
text = text.replace("null", "None")

try:
dict_value = ast.literal_eval(text)
except Exception as e:
UnitxtWarning(
f"Unable to convert input text to json format in JsonStrToListOfKeyValuePairs due to {e}. Text: {text}"
)
dict_value = {}
return [
(str(key), str(value))
for key, value in dict_value.items()
if value is not None
]