Skip to content

End-to-end Power BI project analyzing football player market values. Features data cleaning (Power Query), advanced DAX modeling, and interactive visualization.

Notifications You must be signed in to change notification settings

J-WU1/Football-Market-Value-Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

⚽ Football Market Value Analysis (Power BI)

Power BI DAX Power Query

🇺🇸 English Version

📌 Project Overview

This interactive dashboard analyzes football player data from Transfermarkt to predict and visualize market values. This project demonstrates my ability to handle the full Business Intelligence lifecycle, from raw data ingestion to actionable insights using Power BI.

(Note: This project was developed locally using Power BI Desktop. The screenshots below demonstrate the dashboard's features and insights.)


📸 Main Dashboard View

Main Dashboard Preview


🎯 Objectives

The goal was to answer key business questions using data:

  • Which clubs and nations hold the highest total market value?
  • Who are the most valuable players on the market?
  • How is market value distributed across different positions and age groups?

🛠️ Technical Implementation

  1. ETL & Data Cleaning (Power Query):

    • Ingested raw CSV data from Kaggle.
    • Performed data transformation: handling null values, type casting, and column selection.
    • Created calculated columns (e.g., dynamic Age calculation from birthdate).
  2. Modeling & DAX:

    • Designed a Star Schema data model.
    • Wrote complex DAX measures for key metrics (Total Market Value, Player Count, Average Value).
  3. Visualization & Storytelling:

    • Designed a dynamic report using Treemaps, Bar Charts, and KPIs.
    • Implemented Slicers and Filters for interactive exploration (by Club, Nationality, Position).

✨ Interactivity Examples

1. Focus on "Midfielders"

Here is the report filtered to show only players in the "Midfield" position. The KPIs and charts update dynamically.

Dashboard Filtered by Midfield

2. Focus on "France"

Here is the report filtered to show only players with "France" as their nationality.

Dashboard Filtered by France


📂 Repository Contents

  • DataFootTransfertmarkt.pbix: The source Power BI file.
  • players.csv: Raw dataset used for analysis.
  • /images: Folder containing dashboard screenshots.

🇫🇷 Version Française

🎯 Objectif du Projet

Ce projet vise à mettre en pratique l'ensemble du processus de Business Intelligence avec Power BI, du nettoyage des données à la visualisation. L'objectif était de répondre à des questions clés telles que la répartition de la valeur marchande par club, nation et poste.

🛠️ Compétences Mises en Œuvre

  1. Collecte et Nettoyage (Power Query) :

    • Importation et nettoyage du jeu de données (Kaggle).
    • Gestion des valeurs nulles et typage des données.
    • Création de colonnes calculées (âge, catégories).
  2. Modélisation et DAX :

    • Création de mesures DAX optimisées pour les calculs clés.
  3. Visualisation :

    • Conception d'un rapport dynamique avec filtres interactifs.

(Les captures d'écran ci-dessus illustrent le fonctionnement des filtres dynamiques sur les positions et les nationalités).

About

End-to-end Power BI project analyzing football player market values. Features data cleaning (Power Query), advanced DAX modeling, and interactive visualization.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published