Tomato disease classifier wih CNN
photo credits: Janko Ferlic
The system is a tomato disease classifier that uses Convolutional Nueral Networks to detect the type of leaf disease present in a tomato plant. A user can upload a picture of a tomato to a React frontend website which sends the request to a FastAPI backend via nginx. Finally, I deployed the system to AWS ec2 webserver
- Github @JM_Rono
- Linked_in @John Michael Rono
1. Machine learning
2. Frontend
3. Backend
4. Deploying
- Tensorflow
- React
- FastAPI
- Nginx
- AWS Server
- Check-out notebook: @notebook
- React app in
buildfolder - To run build:
npm install -g serve
serve -s build
I created a frontend site to allow a user to drag and drop images of tomato leaves. The site then sends a POST request to a FastAPI backend server. The Frontend UI looks like this:
- Get inside
apifile
cd api
- Run main.py
uvicorn main:app --reload
conf file:
server {
listen 80;
#listen [::]:80 default_server;
root /var/www/html/build/;
index index.html;
server_name myserver.com;
location /api/ {
proxy_pass http://127.0.0.1:8000/;
}
}
Project is Hosted at: my_AWS_ec2 instance
- I will update the link incase I change the ec2 instance
.png)
.png)
.png)
.png)