This project is an AI-powered Job Description Generator built using Groq's LLaMA 3-70B model and FastAPI. It generates clear, structured, and professional job descriptions based on user-provided input like role, experience, skills, job type, and location.
- π§ Powered by Groq's LLaMA 3-70B via OpenAI-compatible API
- βοΈ Built with FastAPI for fast and scalable backend APIs
- β Structured input with Pydantic validation
- π§Ύ Clean output with basic markdown cleanup
- π Secure API integration using
.envfor keys
- Language: Python
- Framework: FastAPI
- LLM: Groq LLaMA 3-70B (OpenAI-compatible)
- Input Validation: Pydantic
- Env Management: python-dotenv
Job_Description_Generator/ βββ .gitignore # Ignore sensitive files (e.g., .env) βββ .env # API key (not pushed to GitHub) βββ job_description_generator.py # Main FastAPI app βββ README.md # Project overview
- Clone the repo
git clone https://github.com/JeevanChevula/job-description-generator.git cd job-description-generator
2.Install dependencies
pip install fastapi uvicorn python-dotenv openai
3.Create a .env file
GROQ_API_KEY=your_actual_groq_api_key_here
4.Run the FastAPI app
uvicorn job_description_generator:app --reload
5.Test the endpoint at http://127.0.0.1:8000/docs
6.Output Example
POST /generate-jd
{ "role": "AI/ML Engineer", "experience": "2+ years", "must_have_skills": ["Python", "TensorFlow", "LLMs"], "preferred_skills": ["LangChain", "Docker"], "job_type": "Full-time", "location": "Remote" }