Cognitive orchestrator for AI coding agents
Itzamna teaches AI coding agents to think with context, memory, and workflows. It's a cognitive orchestrator that transforms basic AI CLIs into intelligent, memory-aware development assistants.
Key capabilities:
- Python CLI (
itzamna): Bootstrap, status, check commands - Cognitive Kernel: 3-level decision system (K1 reflexive, K2 deliberate, K3 deep)
- Memory System: CoALA-inspired 4-layer memory architecture
- Context Engineering: Lean (3 files) or enterprise (10+ files) structures
- AI Slash Commands (
/itzamna.*): Memory & context management for agents
Named after the Mayan god of wisdom and writing, Itzamna brings intelligence to AI development workflows.
PYTHON CLI (itzamna) → Bootstrap + Detection
↓
Templates (kernel, memory, context)
↓
AI AGENT + KERNEL (K1/K2/K3) → MEMORY + CONTEXT
↑
AGENTS.md
CONSTITUTION.md
MEMORY.md
- Python CLI: Bootstrap, multi-CLI detection, status (typer + rich)
- Cognitive Kernel: 3-level decision making (reflexive → deliberate → deep)
- Memory: CoALA 4-layer architecture (Working, Project Context, Episodic, Semantic)
- Multi-CLI: Auto-detects and installs to 17 AI CLIs simultaneously
- Token Efficient: 95% reduction from v2 (~562 tokens vs ~12K+)
| CLI | Commands Directory | Core Files | Type |
|---|---|---|---|
| GitHub Copilot | .github/agents/ |
kernel.md, AGENTS.md | IDE |
| Claude Code | .claude/commands/ |
kernel.md, AGENTS.md | CLI |
| Gemini CLI | .gemini/commands/ |
GEMINI.md, kernel.md | CLI |
| Cursor | .cursor/commands/ |
kernel.md, AGENTS.md | IDE |
| Qwen Code | .qwen/commands/ |
kernel.md, AGENTS.md | CLI |
| opencode | .opencode/commands/ |
kernel.md, AGENTS.md | CLI |
| Codex CLI | .codex/prompts/ |
kernel.md, AGENTS.md | CLI |
| Windsurf | .windsurf/commands/ |
kernel.md, AGENTS.md | IDE |
| Kilo Code | .kilocode/commands/ |
kernel.md, AGENTS.md | IDE |
| Auggie CLI | .augment/commands/ |
kernel.md, AGENTS.md | CLI |
| CodeBuddy | .codebuddy/commands/ |
kernel.md, AGENTS.md | CLI |
| Qoder CLI | .qoder/commands/ |
kernel.md, AGENTS.md | CLI |
| Roo Code | .roo/commands/ |
kernel.md, AGENTS.md | IDE |
| Amazon Q CLI | .amazonq/commands/ |
kernel.md, AGENTS.md | CLI |
| Amp | .agents/ |
kernel.md, AGENTS.md | CLI |
| SHAI | .shai/commands/ |
kernel.md, AGENTS.md | CLI |
| IBM Bob | .bob/commands/ |
kernel.md, AGENTS.md | IDE |
| Command | Description |
|---|---|
itzamna init |
Bootstrap: detect CLIs, install kernel, create MEMORY.md, setup .context/ |
itzamna check |
Show status (version, detected CLIs, installed commands) |
itzamna version |
Show Itzamna CLI version |
itzamna init --ai <cli> |
Bootstrap for specific CLI only |
itzamna init /path/to/project |
Bootstrap in specific directory |
| Command | Description | Purpose |
|---|---|---|
/itzamna.init |
Verify Itzamna installation | Check if kernel, memory, context are loaded |
/itzamna.status |
System status | Show CLI info, memory state, context structure |
/itzamna.memory |
Memory management | Read/update/check MEMORY.md (episodic memory) |
/itzamna.context |
Context management | Manage .context/ directory (status/check/upgrade/update) |
uv tool install itzamna-cli --from git+https://github.com/KrystianYCSilva/itzamna-prompt-os.gitcd your-project/
itzamna init # Detects CLIs, creates kernel, MEMORY.md, .context/
itzamna check # Verify installation# Verify installation
/itzamna.init
# Check system status
/itzamna.status
# Read memory
/itzamna.memory read
# Check context structure
/itzamna.context statusThe agent now has:
- K1 (Reflexive): Fast decisions from MEMORY.md
- K2 (Deliberate): Structured reasoning with .context/
- K3 (Deep): Long-term planning with CONSTITUTION.md
Phase 1: Detection → Scan for AI CLI directories
Phase 2: Bootstrap → Install kernel.md + AGENTS.md per CLI
Phase 3: Memory → Create MEMORY.md (episodic memory template)
Phase 4: Context → Setup .context/ (lean or enterprise)
Phase 5: Core → Install WORKFLOWS.md, QUALITY-GATES.md
Phase 6: Commands → Install 4 slash commands per CLI
# Install globally with uv
uv tool install itzamna-cli --from git+https://github.com/KrystianYCSilva/itzamna-prompt-os.git
# Or with pipx
pipx install git+https://github.com/KrystianYCSilva/itzamna-prompt-os.git
# Or from local clone
git clone https://github.com/KrystianYCSilva/itzamna-prompt-os.git
cd itzamna-prompt-os
uv tool install .See INSTALL.md for detailed installation instructions and troubleshooting.
# Clone and install in development mode
git clone https://github.com/KrystianYCSilva/itzamna-prompt-os.git
cd itzamna-prompt-os
pip install -e .
# Or with uv
uv tool install --editable .itzamna version # Check CLI version
itzamna check # Check detected CLIs
/itzamna.init # Check installation in AI CLIFor each detected AI CLI:
- kernel.md - 3-level cognitive decision system (K1/K2/K3)
- AGENTS.md - Entry point with rules and structure
- CONSTITUTION.md - T0/T1/T2 rule hierarchy
- MEMORY.md - Episodic memory template (CoALA-inspired)
/itzamna.init- Verify installation/itzamna.status- System status/itzamna.memory- Read/update/check MEMORY.md/itzamna.context- Manage .context/ directory
- WORKFLOWS.md - Task workflows
- QUALITY-GATES.md - Quality criteria
- .context/ - Lean (3 files) or enterprise (10+ files)
project.md- Project overviewtech.md- Tech stackrules.md- Project rules- Enterprise:
_meta/,standards/,patterns/,knowledge/,workflows/
itzamna-prompt-os/
├── src/itzamna_cli/
│ └── __init__.py # CLI implementation (Python/Typer/Rich)
├── templates/
│ ├── kernel.md # 3-level cognitive kernel (K1/K2/K3)
│ ├── agents-template.md # AGENTS.md template
│ ├── constitution-template.md # T0/T1/T2 rules
│ ├── memory-template.md # Episodic memory template
│ ├── skill-template.md # Skill creation (Hefesto integration)
│ ├── commands/ # 4 slash commands
│ │ ├── itzamna.init.md
│ │ ├── itzamna.status.md
│ │ ├── itzamna.memory.md
│ │ └── itzamna.context.md
│ └── context/ # .context/ templates
│ ├── project.md # Lean structure (3 files)
│ ├── tech.md
│ ├── rules.md
│ └── enterprise/ # Enterprise structure (10+ files)
│ ├── README.md
│ ├── _meta/
│ ├── standards/
│ ├── patterns/
│ ├── knowledge/
│ └── workflows/
├── core/
│ ├── WORKFLOWS.md # Task workflows
│ └── QUALITY-GATES.md # Quality criteria
├── CONTRIBUTING.md # Contribution guide
├── CODE_OF_CONDUCT.md # Community standards
├── CONSTITUTION.md # T0 governance rules
├── LICENSE # MIT License
└── pyproject.toml # v3.0.0
Total: 14 core files, 1,354 lines (95% reduction from v2)
your-project/
├── AGENTS.md # AI entry point
├── CONSTITUTION.md # T0/T1/T2 rules
├── MEMORY.md # Episodic memory
├── .context/ # Context directory
│ ├── project.md
│ ├── tech.md
│ └── rules.md
├── .claude/commands/ # Commands (per detected CLI)
│ ├── itzamna.init.md
│ ├── itzamna.status.md
│ ├── itzamna.memory.md
│ └── itzamna.context.md
├── .claude/ # Core files
│ ├── kernel.md
│ └── core/
│ ├── WORKFLOWS.md
│ └── QUALITY-GATES.md
└── ...
4-layer memory architecture:
- Working Memory: Current task context
- Project Context: .context/ directory (JIT loaded)
- Episodic Memory: MEMORY.md (past sessions)
- Semantic Memory: Templates + knowledge base
Lean structure (3 files):
project.md- Project overviewtech.md- Tech stackrules.md- Project rules
Enterprise structure (10+ files):
_meta/- Key decisions, project overview, tech stackstandards/- Architecture rules, code quality, testingpatterns/- Architectural patternsknowledge/- Domain conceptsworkflows/- Deployment, development processes
- K1 (Reflexive): Fast decisions from MEMORY.md (~100ms)
- K2 (Deliberate): Structured reasoning with .context/ (~1-2s)
- K3 (Deep): Long-term planning with CONSTITUTION.md (~5-10s)
- Files: 200+ (v2) → 14 (v3) — 95% reduction
- Lines: ~15,000 (v2) → 1,354 (v3) — 91% reduction
- Token budget to start: ~12K+ (v2) → ~562 (v3) — 95% reduction
YAML frontmatter in all .md files enables:
- JIT (Just-In-Time) loading
- Metadata-driven discovery
- Efficient context switching
| Resource | URL |
|---|---|
| CoALA Paper | https://arxiv.org/abs/2309.02427 |
| Agent Skills Spec | https://agentskills.io |
| Hefesto Skill Generator | https://github.com/KrystianYCSilva/hefesto-skill-generator |
| Spec-kit | https://github.com/KrystianYCSilva/spec-kit |
- Spec-kit Integration: Detects
speckit.*commands and delegates specification tasks - Hefesto Integration: Detects
/hefesto.*commands and delegates skill generation - Enterprise Templates: Ready-to-use .context/ structures for large projects
- See CONTRIBUTING.md for how to contribute
- See CODE_OF_CONDUCT.md for community behavior expectations
- See CONSTITUTION.md for T0 governance rules
- Licensed under MIT - see LICENSE
Itzamna PromptOS | Teaching AI agents to think | 2026