Skip to content
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 46 additions & 2 deletions ci_test/unit_tests/test_unit_layer_batch_normalization.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,18 +104,62 @@ def construct_model(lbann):
# LBANN implementation
decay = 0.9
epsilon = 1e-5
x = x_lbann
x = lbann.Identity(x_lbann, name='input_layer')
y = lbann.BatchNormalization(x,
decay=decay,
epsilon=epsilon,
scale_init=0.8,
bias_init=-0.25,
statistics_group_size=-1,
data_layout='data_parallel')
data_layout='data_parallel',
name="global_bn_layer")
z = lbann.L2Norm2(y)
obj.append(z)
metrics.append(lbann.Metric(z, name='global statistics'))

# NumPy Implementation

vals = []
mb_size = num_samples() // 2
i = 0
running_mean = 0
running_var = 1
scale = 0.8
bias = -0.25

while (i < num_samples()):
k = i + mb_size if (i + mb_size) < num_samples() else num_samples()
sample = _samples[i:k].reshape((k-i,7,5,3))

local_mean = sample.mean((0, 2, 3))
local_var = sample.var((0, 2, 3))

running_mean = decay * running_mean + (1-decay)*local_mean[None,:,None,None]
running_var = decay * running_var + (1-decay)*local_var[None,:,None,None]

inv_stdev = 1 / (np.sqrt(running_var + epsilon))

normalized = (sample - running_mean) * inv_stdev
y = scale * normalized + bias
z = tools.numpy_l2norm2(y)
vals.append(z)
i += mb_size
val = np.mean(z)

tol = 8 * val * np.finfo(np.float32).eps
callbacks.append(lbann.CallbackDumpOutputs(
layers="input_layer"
))
callbacks.append(lbann.CallbackDumpOutputs(
layers="global_bn_layer"
))
callbacks.append(lbann.CallbackCheckMetric(
metric=metrics[-1].name,
lower_bound=val-tol,
upper_bound=val+tol,
error_on_failure=True,
execution_modes='test'))

# ------------------------------------------
# Gradient checking
# ------------------------------------------
Expand Down