Skip to content

[IGARSS 2024] Code for "CLIP-Guided Source-Free Object Detection in Aerial Images"

Notifications You must be signed in to change notification settings

Lans1ng/SFOD-RS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CLIP-Guided Source-Free Object Detection in Aerial Images

💥 News

This paper is accepted by IGARSS2024 as a oral representation and is accessible here.

🎨 Overview

Overview of the proposed SFOD framework.

🎮 Getting Started

1. Install Environment

conda create --name sfod python=3.8
conda activate sfod

pip install torch===1.7.1+cu110 torchvision===0.8.2+cu110 torchaudio===0.7.2 -f https://download.pytorch.org/whl/torch_stable.html --no-cache

git clone https://github.com/Lans1ng/SFOD-RS.git
cd SFOD-RS
pip install -r requirements.txt

2. Prepare Dataset

Note : For more detail about other corruptions and original cloudy image, please refer to DOTA-C.

  • Organize the dataset as follow:

    dataset/
    ├──DIOR/
    │   ├── Annotations 
    │   ├── JPEGImages
    │   ├── ImageSets
    │   ├── Corruption/
    │   │   ├── JPEGImages-brigtness
    │   │   ├── JPEGImages-cloudy
    │   │   ├── JPEGImages-contrast
    │   │   ├── ...
    │   │   ├── JPEGImages-zoom_blur  
    • JPEGImages contains all images in DIOR dataset.
    • ImageSets contains all train/val/test splits in DIOR dataset.
    • Corruption contains all kinds of corrupted images on DIOR dataset.

3. Download Checkpoints

Before training,please download the pretrained Oriented-RCNN model weights baseline.pth trained from DIOR training set to baseline fold.

4. Training

Take DIOR-Cloudy dataset as examples:

python train.py configs/unbiased_teacher/sfod/unbiased_teacher_oriented_rcnn_selftraining_cga.py --cfg-options corrupt="cloudy"

Note: If you want to retrain the Oriented-RCNN baseline model, please refer to mmrotate.

5. Testing

Take DIOR-Cloudy dataset as examples:

python test.py configs/unbiased_teacher/sfod/unbiased_teacher_oriented_rcnn_selftraining_cga.py work_dirs/unbiased_teacher_oriented_rcnn_selftraining_cga/latest.pth --eval mAP --cfg-options corrupt="cloudy"

💡 Acknowledgement

🖊️ Citation

If you find this project useful in your research, please consider cite:

@INPROCEEDINGS{10642376,
  author={Liu, Nanqing and Xu, Xun and Su, Yongyi and Liu, Chengxin and Gong, Peiliang and Li, Heng-Chao},
  booktitle={IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium}, 
  title={Clip-Guided Source-Free Object Detection in Aerial Images}, 
  year={2024},
  volume={},
  number={},
  pages={7964-7967},
  doi={10.1109/IGARSS53475.2024.10642376}}

About

[IGARSS 2024] Code for "CLIP-Guided Source-Free Object Detection in Aerial Images"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages