This paper is accepted by IGARSS2024 as a oral representation and is accessible here.
Overview of the proposed SFOD framework.
conda create --name sfod python=3.8
conda activate sfod
pip install torch===1.7.1+cu110 torchvision===0.8.2+cu110 torchaudio===0.7.2 -f https://download.pytorch.org/whl/torch_stable.html --no-cache
git clone https://github.com/Lans1ng/SFOD-RS.git
cd SFOD-RS
pip install -r requirements.txt
-
Download the DIOR dataset (Google Drive or BaiduNetDisk).
-
Download the corruption images with cloud (DIOR-Cloudy) from Google Drive.
Note : For more detail about other corruptions and original cloudy image, please refer to DOTA-C.
-
Organize the dataset as follow:
dataset/ ├──DIOR/ │ ├── Annotations │ ├── JPEGImages │ ├── ImageSets │ ├── Corruption/ │ │ ├── JPEGImages-brigtness │ │ ├── JPEGImages-cloudy │ │ ├── JPEGImages-contrast │ │ ├── ... │ │ ├── JPEGImages-zoom_blur
JPEGImages
contains all images in DIOR dataset.ImageSets
contains all train/val/test splits in DIOR dataset.Corruption
contains all kinds of corrupted images on DIOR dataset.
Before training,please download the pretrained Oriented-RCNN model weights baseline.pth trained from DIOR training set to baseline
fold.
Take DIOR-Cloudy dataset as examples:
python train.py configs/unbiased_teacher/sfod/unbiased_teacher_oriented_rcnn_selftraining_cga.py --cfg-options corrupt="cloudy"
Note: If you want to retrain the Oriented-RCNN baseline model, please refer to mmrotate.
Take DIOR-Cloudy dataset as examples:
python test.py configs/unbiased_teacher/sfod/unbiased_teacher_oriented_rcnn_selftraining_cga.py work_dirs/unbiased_teacher_oriented_rcnn_selftraining_cga/latest.pth --eval mAP --cfg-options corrupt="cloudy"
If you find this project useful in your research, please consider cite:
@INPROCEEDINGS{10642376,
author={Liu, Nanqing and Xu, Xun and Su, Yongyi and Liu, Chengxin and Gong, Peiliang and Li, Heng-Chao},
booktitle={IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium},
title={Clip-Guided Source-Free Object Detection in Aerial Images},
year={2024},
volume={},
number={},
pages={7964-7967},
doi={10.1109/IGARSS53475.2024.10642376}}