Author: Lev Rozanov
This Docker image sets up a shared dev environment for the HKU competition projects, cloning repos via HTTPS with a GitHub token.
- Clones both
hku-dataandhku-comp-fixrepos automatically on build using a GitHub token - Python 3.11 with all required dependencies pre-installed in a uv venv
- GPU acceleration support with CUDA 12.1, PyTorch, TensorFlow, and CuPy
- Everyone works in the same environment
- Git LFS support for large data files
- CUDA 12.1 runtime for GPU acceleration
- Python 3.11 and essential packages
- Git and Git LFS configured
- Pre-installed: pandas, numpy, scikit-learn, pyarrow, psutil, jupyter
- GPU frameworks: PyTorch (CUDA), TensorFlow (GPU), CuPy (CUDA)
- RAPIDS 25.8: cuDF, cuML, cuGraph, cuxfilter, cuCIM, cuVS
- Tools: vim, nano, curl, wget, tree, htop
- Both repos cloned into
/workspace-hku/
Build the GPU-enabled image (using buildkit and secret token):
Windows PowerShell:
$env:DOCKER_BUILDKIT=1; docker build --secret id=GITHUB_TOKEN,src=./token.txt -t hku-docker-env-gpu .
Linux:
DOCKER_BUILDKIT=1 docker build --secret id=GITHUB_TOKEN,src=./token.txt -t hku-docker-env-gpu .
# Run the container with GPU access:
docker run --gpus all -it --rm hku-docker-env-gpu
# Test RAPIDS (cuDF/cuML):
python -c "import cudf, cuml; print('cuDF', cudf.__version__, 'cuML', cuml.__version__)"