Skip to content

LevRoz630/docker-hku-avenir

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Author: Lev Rozanov

HKU Docker Environment

This Docker image sets up a shared dev environment for the HKU competition projects, cloning repos via HTTPS with a GitHub token.

What is this?

  • Clones both hku-data and hku-comp-fix repos automatically on build using a GitHub token
  • Python 3.11 with all required dependencies pre-installed in a uv venv
  • GPU acceleration support with CUDA 12.1, PyTorch, TensorFlow, and CuPy
  • Everyone works in the same environment
  • Git LFS support for large data files

What's inside

  • CUDA 12.1 runtime for GPU acceleration
  • Python 3.11 and essential packages
  • Git and Git LFS configured
  • Pre-installed: pandas, numpy, scikit-learn, pyarrow, psutil, jupyter
  • GPU frameworks: PyTorch (CUDA), TensorFlow (GPU), CuPy (CUDA)
  • RAPIDS 25.8: cuDF, cuML, cuGraph, cuxfilter, cuCIM, cuVS
  • Tools: vim, nano, curl, wget, tree, htop
  • Both repos cloned into /workspace-hku/

Quick Start

Build the GPU-enabled image (using buildkit and secret token):

Windows PowerShell:
$env:DOCKER_BUILDKIT=1; docker build --secret id=GITHUB_TOKEN,src=./token.txt -t hku-docker-env-gpu  .

Linux:
DOCKER_BUILDKIT=1 docker build --secret id=GITHUB_TOKEN,src=./token.txt -t hku-docker-env-gpu  .

# Run the container with GPU access:
docker run --gpus all -it --rm hku-docker-env-gpu

# Test RAPIDS (cuDF/cuML):
python -c "import cudf, cuml; print('cuDF', cudf.__version__, 'cuML', cuml.__version__)"

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published