A Flask-based e-commerce targeting system for customer segmentation and personalized product recommendations. Upload structured interaction data, receive AI-driven suggestions, and analyze user behavior.
Ensure you have the following installed:
- Python 3.8+
- pip (Python package manager)
- Git (for cloning the repository)
On Windows:
python -m venv venv
venv\Scripts\activateOn macOS/Linux:
python3 -m venv venv
source venv/bin/activatepip install -r requirements.txtOn Windows:
set FLASK_APP=run.py
set FLASK_ENV=developmentOn macOS/Linux:
export FLASK_APP=run.py
export FLASK_ENV=developmentflask run🔗 Open http://127.0.0.1:5000 in your browser.
- Upload your dataset.
- Match required and additional columns.
- Run the segmentation or recommendation.
- View results.
- Open
config.py. - Set
DEBUG_MODE = True.
deactivatevisitorid,itemid,event
12345,6789,view
54321,1234,transaction
visitorid,total_views,total_addtocart,total_purchases
12345,10,2,1
54321,5,1,0
Listed in requirements.txt:
flask
pandas
numpy
scikit-learn
matplotlib
seaborn
scipypip list | grep -E 'flask|pandas|numpy|scikit-learn|matplotlib|seaborn|scipy'- Dependencies Not Installing: Ensure correct versions of Python and pip.
- Server Not Starting: Verify
FLASK_APPis set torun.py. - File Upload Issues: Ensure the dataset is in CSV format.
# Check Python and pip versions
python --version
pip --version
pip install --upgrade pip
# Check Flask app variable
echo $FLASK_APP
# Check file type
file uploads/sample.csv- Fork the repository
- Create a new branch (
git checkout -b feature-branch) - Commit your changes (
git commit -m "Added new feature") - Push to the branch (
git push origin feature-branch) - Create a pull request
This project is licensed under the MIT License.
🌟 If you found this project helpful, please ⭐ the repository!