Skip to content

MIA123MIA321/IMSP_MUMPS_Solver

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IMSP_MUMPS_Solver

MUMPS Solver for the following 2D Inverse medium scattering problem(IMSP)

  • $\phi_0$ : total field
  • $\phi^i$ : inident field
  • $\psi$ : scattered field
  • $q$ : scatterer, with compact support in $\mathbb{R}^2$

Boundary Condition

Summerfield Radiation Condition

Reduce the problem by an artificial surface: First-order Absorbing Boundary Condition

Forward problem

For fixed $\phi^i,q,k$

Induce

Inverse problem

Determine the scatter $q(x)$ from the measurements of $\psi|_{\partial \Omega}$

Incident Wave (plane wave)

Uniformly, Define $\phi^i$ from $m$ different angles:

Optimization Model

  • $M$ : the matrix to generate $\psi|_{\partial \Omega}$ from $\psi$
  • $q_t$ : the ground truth of the scatterer $q$
  • $\operatorname{Data}(q_t)$ : $\psi|_{\partial \Omega}$ aroused by $q_t$

Method

  • Solve the Forward problem(PDE) by FDM to generate the equation and MUMPS to solve it
  • Derive $\frac{\partial \mathscr{F}_k}{\partial q}$ and $\frac{\partial J}{\partial q}$ through functional analysis
  • Use L-BFGS to solve the total optimization problem

Scatterer

Parameters

  • k : the frequency of the incident wave
  • m : the number of incident angles
  • maxq : the strength of the scatterer
  • nosielevel : the nosie level of the collected boundary data
    We use a grid of 64 on $[0,1]^2$ to discrete the problem. The Initial gauess of $q$ is zero.
    As for L-BFGS, we set gtol = 1e-10 and maxiter=50.

Usage

Results

  • iter : iter after iteration termination
  • $J_0$ : initial value of $J$
  • rel-J : $J_{res}$ / $J_0$
  • rel-err : relative error between $q_{res}$ and $q_t$ after iteration termination
  • time : time per iter after iteration termination

T shape

k m maxq noise iter $J_0$ rel-J rel-err time
80 64 0.1 0.0 50 1.71e2 5.28e-7 8.61% 4.77
10,20,40,60,80 3.13e2 6.16e-7 8.63% 19.27
40,60,80 2.99e2 6.07e-7 8.62% 12.59
60,80,100 6.01e2 5.28e-8 1.05% 12.61
16 1.72e2 1.93e-5 13.70% 1.18
32 1.71e2 1.00e-6 8.65% 2.14
128 1.71e2 4.86e-7 8.61% 8.54
0.01 2.15e1 4.39e-7 9.48% 5.71
0.3 1.74e2 5.72e-2 154.17% 5.44
0.5 5.62e2 1.98e-1 138.90% 5.38
0.7 4.84e1 1.35e-1 116.30% 5.62
1.0 3.47e1 1.39e-1 113.09% 5.52
0.1 1.75e2 2.57e-2 25.75% 5.75
0.3 2.14e2 1.87e-1 71.51% 5.44
0.5 2.91e2 3.81e-1 134.54% 5.43

Gauss shape

k m maxq noise iter $J_0$ rel-J rel-err time
20 64 0.1 0.0 50 1.26e0 7.86e-8 1.50% 3.99
4 3.98e-2 4.18e-5 60.75% 3.92
10 3.53e-1 5.62e-6 21.36% 4.16
15 7.30e-1 6.24e-7 6.59% 3.91
40 4.98e0 1.59e-9 0.10% 3.92
10,15 1.08e0 5.80e-7 6.66% 7.43
10,15,20 2.34e0 4.58e-8 1.46% 12.05
10,20,40 6.59e0 3.44e-9 0.10% 11.89
16 1.26e0 7.36e-8 1.52% 1.13
32 1.26e0 7.86e-8 1.50% 2.08
128 1.26e0 7.86e-8 1.50% 7.75
0.01 1.27e-1 1.67e-7 1.83% 6.55
0.2 2.47e0 5.41e-8 1.20% 5.89
0.3 3.63e0 3.64e-8 0.93% 5.64
0.4 4.73e0 2.24e-8 0.68% 5.63
0.5 5.76e0 1.72e-8 0.54% 5.48
0.1 1.27e0 1.18e-2 22.12% 6.07
0.3 1.38e0 9.55e-2 71.12% 5.82
0.5 1.63e0 2.29e-1 117.78% 5.65

Multi-Gauss shape

k m maxq noise iter $J_0$ rel-J rel-err time
20 64 0.1 0.0 50 1.84e0 7.88e-8 1.39% 3.97
4 4.50e-2 7.97e-5 56.69% 4.21
10 5.19e-1 6.35e-6 21.04% 4.08
15 1.09e0 7.28e-7 5.85% 4.03
40 7.24e0 1.14e-8 0.42% 4.01
10,15 1.60e0 7.20e-7 5.96% 7.85
10,15,20 3.45e0 7.50e-8 1.48% 12.12
10,20,40 9.61e0 9.42e-9 0.42% 12.55
16 1.84e0 8.88e-8 1.48% 1.13
32 1.84e0 7.83e-8 1.38% 2.01
128 1.84e0 7.88e-8 1.39% 9.49
0.01 1.86e-1 2.49e-7 1.77% 4.13
0.2 3.66e0 6.36e-8 1.24% 3.89
0.3 5.42e0 6.42e-8 1.19% 4.66
0.4 7.13e0 6.59e-8 1.12% 4.01
0.5 8.76e0 6.45e-8 1.19% 4.48
0.1 1.86e0 1.25e-2 20.98% 5.59
0.3 2.05e0 9.95e-2 69.01% 5.94
0.5 2.43e0 2.36e-1 101.88% 5.86

About

MUMPS Solver for Inverse medium scattering problem

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published