MUMPS Solver for the following 2D Inverse medium scattering problem(IMSP)
-
$\phi_0$ : total field -
$\phi^i$ : inident field -
$\psi$ : scattered field -
$q$ : scatterer, with compact support in$\mathbb{R}^2$
Summerfield Radiation Condition
Reduce the problem by an artificial surface: First-order Absorbing Boundary Condition
For fixed
Induce
Determine the scatter
Uniformly, Define
-
$M$ : the matrix to generate$\psi|_{\partial \Omega}$ from$\psi$ -
$q_t$ : the ground truth of the scatterer$q$ -
$\operatorname{Data}(q_t)$ :$\psi|_{\partial \Omega}$ aroused by$q_t$
- Solve the Forward problem(PDE) by FDM to generate the equation and MUMPS to solve it
- Derive
$\frac{\partial \mathscr{F}_k}{\partial q}$ and$\frac{\partial J}{\partial q}$ through functional analysis - Use L-BFGS to solve the total optimization problem
- k : the frequency of the incident wave
- m : the number of incident angles
- maxq : the strength of the scatterer
- nosielevel : the nosie level of the collected boundary data
We use a grid of 64 on$[0,1]^2$ to discrete the problem. The Initial gauess of$q$ is zero.
As for L-BFGS, we setgtol = 1e-10andmaxiter=50.
- MUMPS Install
bash scripts/xxx.sh
- iter : iter after iteration termination
-
$J_0$ : initial value of$J$ - rel-J :
$J_{res}$ /$J_0$ - rel-err : relative error between
$q_{res}$ and$q_t$ after iteration termination - time : time per iter after iteration termination
| k | m | maxq | noise | iter | rel-J | rel-err | time | |
|---|---|---|---|---|---|---|---|---|
| 80 | 64 | 0.1 | 0.0 | 50 | 1.71e2 | 5.28e-7 | 8.61% | 4.77 |
| 10,20,40,60,80 | 3.13e2 | 6.16e-7 | 8.63% | 19.27 | ||||
| 40,60,80 | 2.99e2 | 6.07e-7 | 8.62% | 12.59 | ||||
| 60,80,100 | 6.01e2 | 5.28e-8 | 1.05% | 12.61 | ||||
| 16 | 1.72e2 | 1.93e-5 | 13.70% | 1.18 | ||||
| 32 | 1.71e2 | 1.00e-6 | 8.65% | 2.14 | ||||
| 128 | 1.71e2 | 4.86e-7 | 8.61% | 8.54 | ||||
| 0.01 | 2.15e1 | 4.39e-7 | 9.48% | 5.71 | ||||
| 0.3 | 1.74e2 | 5.72e-2 | 154.17% | 5.44 | ||||
| 0.5 | 5.62e2 | 1.98e-1 | 138.90% | 5.38 | ||||
| 0.7 | 4.84e1 | 1.35e-1 | 116.30% | 5.62 | ||||
| 1.0 | 3.47e1 | 1.39e-1 | 113.09% | 5.52 | ||||
| 0.1 | 1.75e2 | 2.57e-2 | 25.75% | 5.75 | ||||
| 0.3 | 2.14e2 | 1.87e-1 | 71.51% | 5.44 | ||||
| 0.5 | 2.91e2 | 3.81e-1 | 134.54% | 5.43 |
| k | m | maxq | noise | iter | rel-J | rel-err | time | |
|---|---|---|---|---|---|---|---|---|
| 20 | 64 | 0.1 | 0.0 | 50 | 1.26e0 | 7.86e-8 | 1.50% | 3.99 |
| 4 | 3.98e-2 | 4.18e-5 | 60.75% | 3.92 | ||||
| 10 | 3.53e-1 | 5.62e-6 | 21.36% | 4.16 | ||||
| 15 | 7.30e-1 | 6.24e-7 | 6.59% | 3.91 | ||||
| 40 | 4.98e0 | 1.59e-9 | 0.10% | 3.92 | ||||
| 10,15 | 1.08e0 | 5.80e-7 | 6.66% | 7.43 | ||||
| 10,15,20 | 2.34e0 | 4.58e-8 | 1.46% | 12.05 | ||||
| 10,20,40 | 6.59e0 | 3.44e-9 | 0.10% | 11.89 | ||||
| 16 | 1.26e0 | 7.36e-8 | 1.52% | 1.13 | ||||
| 32 | 1.26e0 | 7.86e-8 | 1.50% | 2.08 | ||||
| 128 | 1.26e0 | 7.86e-8 | 1.50% | 7.75 | ||||
| 0.01 | 1.27e-1 | 1.67e-7 | 1.83% | 6.55 | ||||
| 0.2 | 2.47e0 | 5.41e-8 | 1.20% | 5.89 | ||||
| 0.3 | 3.63e0 | 3.64e-8 | 0.93% | 5.64 | ||||
| 0.4 | 4.73e0 | 2.24e-8 | 0.68% | 5.63 | ||||
| 0.5 | 5.76e0 | 1.72e-8 | 0.54% | 5.48 | ||||
| 0.1 | 1.27e0 | 1.18e-2 | 22.12% | 6.07 | ||||
| 0.3 | 1.38e0 | 9.55e-2 | 71.12% | 5.82 | ||||
| 0.5 | 1.63e0 | 2.29e-1 | 117.78% | 5.65 |
| k | m | maxq | noise | iter | rel-J | rel-err | time | |
|---|---|---|---|---|---|---|---|---|
| 20 | 64 | 0.1 | 0.0 | 50 | 1.84e0 | 7.88e-8 | 1.39% | 3.97 |
| 4 | 4.50e-2 | 7.97e-5 | 56.69% | 4.21 | ||||
| 10 | 5.19e-1 | 6.35e-6 | 21.04% | 4.08 | ||||
| 15 | 1.09e0 | 7.28e-7 | 5.85% | 4.03 | ||||
| 40 | 7.24e0 | 1.14e-8 | 0.42% | 4.01 | ||||
| 10,15 | 1.60e0 | 7.20e-7 | 5.96% | 7.85 | ||||
| 10,15,20 | 3.45e0 | 7.50e-8 | 1.48% | 12.12 | ||||
| 10,20,40 | 9.61e0 | 9.42e-9 | 0.42% | 12.55 | ||||
| 16 | 1.84e0 | 8.88e-8 | 1.48% | 1.13 | ||||
| 32 | 1.84e0 | 7.83e-8 | 1.38% | 2.01 | ||||
| 128 | 1.84e0 | 7.88e-8 | 1.39% | 9.49 | ||||
| 0.01 | 1.86e-1 | 2.49e-7 | 1.77% | 4.13 | ||||
| 0.2 | 3.66e0 | 6.36e-8 | 1.24% | 3.89 | ||||
| 0.3 | 5.42e0 | 6.42e-8 | 1.19% | 4.66 | ||||
| 0.4 | 7.13e0 | 6.59e-8 | 1.12% | 4.01 | ||||
| 0.5 | 8.76e0 | 6.45e-8 | 1.19% | 4.48 | ||||
| 0.1 | 1.86e0 | 1.25e-2 | 20.98% | 5.59 | ||||
| 0.3 | 2.05e0 | 9.95e-2 | 69.01% | 5.94 | ||||
| 0.5 | 2.43e0 | 2.36e-1 | 101.88% | 5.86 |
