- AI Agent(智能体)技术白皮书(Google,2024)
- Building effective agents (Anthropic, 2024)
- Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond(Amazon, 2023)
- summary: 大语言模型(LLMs)实用指南, 主要关注下游 NLP 任务中如何使用 LLM
- paper: https://arxiv.org/abs/2304.13712
- github: https://github.com/Mooler0410/LLMsPracticalGuide
- Jason Brownlee创建,侧重机器学习、深度学习和DS;Python; https://machinelearningmastery.com/
- Julia Silge创建,侧重R语言和tidyverse;https://juliasilge.com/
- Rob J. Hyndman 维护,侧重时间序列;https://robjhyndman.com/hyndsight/
caret
R 包的官方文档;https://topepo.github.io/caret/- Richard S. Sutton:http://incompleteideas.net/
- Shunyu Yao,CoALA和ReAct的论文 也很值得看 https://ysymyth.github.io/
- https://lilianweng.github.io/
- GitHub 资源合集,收集了各类 公开可用的数据集;https://github.com/smuthubabu/awesome-public-datasets
- AWS提供的开放数据存储平台; https://registry.opendata.aws/
- 全球开放数据门户的集合: https://dataportals.org/search
- 欧洲各国和地区发布的开放数据集: https://opendatamonitor.eu/frontend/web/index.php?r=datacatalogue%2Flist&page=1&per-page=10
- Dify: https://cloud.dify.ai/apps
- AutoGen 更适合multi-agent
- Langchain
- IBM watsonx.ai https://www.ibm.com/products/watsonx-ai/ai-agent-development
- FastGPT https://cloud.tryfastgpt.ai/app/list
- coze
- UC Berkeley CS294/194-196 Large Language Model Agents: CS294/194-196 Large Language Model Agents
- UC Berkeley CS294/194-280 Advanced Large Language Model Agents: https://rdi.berkeley.edu/adv-llm-agents/sp25
- DeepLearning.AI Multi AI Agent Systems with crewAI: https://learn.deeplearning.ai/courses/multi-ai-agent-systems-with-crewai
- OpenAI Cookbook有许多关于如何有效利用 LLM 的深入示例。
- 提示词工程指南库包含有关prompt工程的相当全面的教育材料集合。