Open
Description
Hello,
I just looked into your function that you use for initializing img_files to be used for spllitting data for Mast3r inference
#utils/sfm_utils.py
def split_train_test(image_files, llffhold=8, n_views=None, verbose=True):
test_idx = np.linspace(1, len(image_files) - 2, num=12, dtype=int)
train_idx = [i for i in range(len(image_files)) if i not in test_idx]
sparse_idx = np.linspace(0, len(train_idx) - 1, num=n_views, dtype=int)
train_idx = [train_idx[i] for i in sparse_idx]
if verbose:
print(">> Spliting Train-Test Set: ")
# print(" - sparse_idx: ", sparse_idx)
print(" - train_set_indices: ", train_idx)
print(" - test_set_indices: ", test_idx)
train_img_files = [image_files[i] for i in train_idx]
test_img_files = [image_files[i] for i in test_idx]
return train_img_files, test_img_files
From what I see here, there is no splitting according to LLFF logic, and this code does not serve it's purpose (or maybe I am missing something about approach). For my input image_files:
image_files
['images/image_000.png', 'images/image_001.png', 'images/image_002.png', 'images/image_003.png', 'images/image_004.png', 'images/image_005.png', 'images/image_006.png', 'images/image_007.png', 'images/image_008.png', 'images/image_009.png']
n_views
10
I get:
/mnt/slurm_home/dusan/InstantSplat/utils/sfm_utils.py(65)split_train_test()
-> print(" - train_set_indices: ", train_idx)
(Pdb) n
- train_set_indices: [0, 0, 0, 0, 0, 0, 0, 0, 0, 9]
/mnt/slurm_home/dusan/InstantSplat/utils/sfm_utils.py(66)split_train_test()
-> print(" - test_set_indices: ", test_idx)
(Pdb) n
- test_set_indices: [1 1 2 2 3 4 4 5 6 6 7 8]
Metadata
Metadata
Assignees
Labels
No labels