Skip to content

dreambooth Lora training failure #250

Open
@yayueLaurazhou

Description

@yayueLaurazhou

I am using the image dataset used in dreambooth paper here https://github.com/google/dreambooth/tree/main/dataset/can

on model Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers

accelerate launch /mnt/sdc/zhouyayue/projects/Sana/train_scripts/train_dreambooth_lora_sana.py \
  --pretrained_model_name_or_path="Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers" \
  --instance_data_dir="/mnt/sdc/zhouyayue/projects/Sana/dreambooth_data" \
  --output_dir="/mnt/sdc/zhouyayue/projects/Sana/output_dreambooth_lora" \
  --mixed_precision="bf16" \
  --instance_prompt="a photo of a <edfe> can" \
  --resolution=1024 \
  --train_batch_size=1 \
  --gradient_accumulation_steps=4 \
  --use_8bit_adam \
  --learning_rate=1e-6 \
  --report_to="wandb" \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --max_train_steps=800 \
  --validation_prompt="ground level view, low camera angle, a realistic photo of a <edfe> can on terrazo tile floor" \
  --validation_epochs=50 \
  --seed="0" \
  --push_to_hub 

I changed the learning rate from 1e-4 to 1e-6, the result is below

Image

at 100 epochs, this are the validation images
Image

Image

Image

after 700 epochs, it gives me photos that doesn't even look like a can, not to mention subject specific features,
Image

Image

what is wrong with my training?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions