Open
Description
I am using the image dataset used in dreambooth paper here https://github.com/google/dreambooth/tree/main/dataset/can
on model Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers
accelerate launch /mnt/sdc/zhouyayue/projects/Sana/train_scripts/train_dreambooth_lora_sana.py \
--pretrained_model_name_or_path="Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers" \
--instance_data_dir="/mnt/sdc/zhouyayue/projects/Sana/dreambooth_data" \
--output_dir="/mnt/sdc/zhouyayue/projects/Sana/output_dreambooth_lora" \
--mixed_precision="bf16" \
--instance_prompt="a photo of a <edfe> can" \
--resolution=1024 \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--use_8bit_adam \
--learning_rate=1e-6 \
--report_to="wandb" \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--max_train_steps=800 \
--validation_prompt="ground level view, low camera angle, a realistic photo of a <edfe> can on terrazo tile floor" \
--validation_epochs=50 \
--seed="0" \
--push_to_hub
I changed the learning rate from 1e-4 to 1e-6, the result is below
at 100 epochs, this are the validation images
after 700 epochs, it gives me photos that doesn't even look like a can, not to mention subject specific features,
what is wrong with my training?
Metadata
Metadata
Assignees
Labels
No labels