[arXiv]
git clone https://github.com/Ody-trek/PoseLLM
cd ./PoseLLM conda create -n PoseLLM python=3.10
conda activate PoseLLM conda install -c conda-forge cudatoolkit-dev conda install pytorch==2.0.1 torchvision==0.15.2 pytorch-cuda=11.7 -c pytorch -c nvidia pip install pycocotools
pip install opencv-python
pip install accelerate==0.21.0
pip install sentencepiece==0.1.99
pip install transformers==4.31.0Download COCO , MPII and Human-Art from website and put the zip file under the directory following below structure, (xxx.json) denotes their original name.
./data
|── coco
│ └── annotations
| | └──coco_train.json(person_keypoints_train2017.json)
| | └──coco_val.json(person_keypoints_val2017.json)
| └── images
| | └──train2017
| | | └──000000000009.jpg
| | └──val2017
| | | └──000000000139.jpg
├── HumanArt
│ └── annotations
| | └──validation_humanart.json
| └── images
| | └──2D_virtual_human
├── mpii
│ └── annot
| | └──valid.json
| | └──gt_valid.mat
| └── images
| | └──000001163.jpg
git lfs install
git clone https://huggingface.co/KTrek/PoseLLM
mkdir checkpoints
mkdir checkpoints/ckpts
mv PoseLLM/coco checkpoints/ckpts
# for training
mkdir checkpoints/model_weights
mv PoseLLM/pretrained/dinov2_vitl14_pretrain.pth checkpoints/model_weights
# clone vicuna1.5
cd checkpoints/model_weights
git clone https://huggingface.co/lmsys/vicuna-7b-v1.5Change IDX option in script to specify the gpu ids for evaluation, multiple ids denotes multiple gpu evaluation.
# evaluate on coco val set
bash scripts/valid_coco.sh
# evaluate on humanart set
bash scripts/valid_humanart.sh
# evaluate on mpii set
bash scripts/valid_mpii.sh # train on coco
bash scripts/train_coco.shNote that GPU memory should not be less than 24GB, training on 2 RTX A6000 GPUs takes about 4 days.
If you find this code useful for your research, please cite our paper:
@article{zhang2025posellm,
title={PoseLLM: Enhancing Language-Guided Human Pose Estimation with MLP Alignment},
author={Zhang, Dewen and Hussain, Tahir and An, Wangpeng and Shouno, Hayaru},
journal={arXiv preprint arXiv:2507.09139},
year={2025}
}
The code is mainly encouraged by LocLLM.
