Description
Exception has occurred: RuntimeError
cusolver error: CUSOLVER_STATUS_INTERNAL_ERROR, when calling cusolverDnCreate(handle)
File "/workspaces/UniAD-main/projects/mmdet3d_plugin/uniad/detectors/uniad_track.py", line 270, in velo_update
g2l_r = torch.linalg.inv(l2g_r2).type(torch.float)
File "/workspaces/UniAD-main/projects/mmdet3d_plugin/uniad/detectors/uniad_track.py", line 643, in _forward_single_frame_inference
ref_pts = self.velo_update(
File "/workspaces/UniAD-main/projects/mmdet3d_plugin/uniad/detectors/uniad_track.py", line 748, in simple_test_track
frame_res = self._forward_single_frame_inference(
File "/workspaces/UniAD-main/projects/mmdet3d_plugin/uniad/detectors/uniad_e2e.py", line 292, in forward_test
result_track = self.simple_test_track(img, l2g_t, l2g_r_mat, img_metas, timestamp)
File "/workspaces/UniAD-main/projects/mmdet3d_plugin/uniad/detectors/uniad_e2e.py", line 83, in forward
return self.forward_test(**kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/parallel/distributed.py", line 799, in forward
output = self.module(*inputs[0], **kwargs[0])
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/workspaces/UniAD-main/projects/mmdet3d_plugin/uniad/apis/test.py", line 90, in custom_multi_gpu_test
result = model(return_loss=False, rescale=True, **data)
File "/workspaces/UniAD-main/tools/test.py", line 231, in main
outputs = custom_multi_gpu_test(model, data_loader, args.tmpdir,
File "/workspaces/UniAD-main/tools/test.py", line 261, in
main()
RuntimeError: cusolver error: CUSOLVER_STATUS_INTERNAL_ERROR, when calling cusolverDnCreate(handle)
这个项目的检测效果看起来很神奇我就想自己复现一下,我使用docker配置的项目环境项目跑起来后在迭代dataloder的数据用模型进行推理时出现这个错误,神奇的是在这个错误发生前代码已经完成datalode迭代的第一个data的推理并且得到了推理结果,但当迭代第二个data时却出现这个问题,我在这个问题上困扰了很长时间,如果有大神能给予一些启发性的指点我将感激不尽
The detection effect of this project looks amazing, so I wanted to reproduce it myself. I used Docker to configure the project environment. After the project was running, when iterating through the dataloader's data and using the model for inference, this error occurred. What's amazing is that before this error occurred, the code had already completed the inference of the first set of data from the dataloader and obtained the inference results. However, when iterating to the second set of data, this problem arose.I have been troubled by this issue for a long time. If any expert could give me some enlightening guidance, I would be immensely grateful.