Skip to content

OpenJobDescription/openjd-model-for-python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Open Job Description - Models For Python

pypi python license

Open Job Description is a flexible open specification for defining render jobs which are portable between studios and render management solutions. This package provides a Python implementation of the data model for Open Job Description's template schemas. It can parse, validate, create JSON/Yaml documents for the Open Job Description specification, and more. A main use-case that this library targets is interoperability by creating applications to translate a Job from Open Job Description to the render management software of your choice.

For more information about Open Job Description and our goals with it, please see the Open Job Description Wiki on GitHub.

Compatibility

This library requires:

  1. Python 3.9 or higher; and
  2. Linux, MacOS, or Windows operating system.

Versioning

This package's version follows Semantic Versioning 2.0, but is still considered to be in its initial development, thus backwards incompatible versions are denoted by minor version bumps. To help illustrate how versions will increment during this initial development stage, they are described below:

  1. The MAJOR version is currently 0, indicating initial development.
  2. The MINOR version is currently incremented when backwards incompatible changes are introduced to the public API.
  3. The PATCH version is currently incremented when bug fixes or backwards compatible changes are introduced to the public API.

Contributing

We encourage all contributions to this package. Whether it's a bug report, new feature, correction, or additional documentation, we greatly value feedback and contributions from our community.

Please see CONTRIBUTING.md for our contributing guidelines.

Example Usage

Reading and Validating a Job Template

To validate a job template, you can read the JSON or YAML input into Python data structures and then pass the result to decode_job_template. By default, this will accept templates of any supported version number with no extensions enabled. Use decode_environment_template for environment templates.

To accept extensions in templates, provide the list of the names you support. See the Open Job Description 2023-09 specification for the list of extensions available.

from openjd.model import DocumentType, decode_job_template, document_string_to_object

# String containing the json of the job template
template_string = """specificationVersion: jobtemplate-2023-09
name: DemoJob
steps:
  - name: DemoStep
    script:
      actions:
        onRun:
          command: python
          args: ["-c", "print('Hello')"]
"""

# You can use 'json.loads' or 'yaml.safe_load' directly as well
template_object = document_string_to_object(
    document=template_string,
    document_type=DocumentType.YAML
)

# Raises a DecodeValidationError if it fails.
job_template = decode_job_template(template=template_object, supported_extensions=["TASK_CHUNKING"])

Once you have the Open Job Description model object, you can use the model_to_object function to convert it into an object suitable for converting to JSON or YAML.

import json
from openjd.model import model_to_object

obj = model_to_object(model=job_template)
print(json.dumps(obj, indent=2))

Creating Template Model Objects

As an alternative to assembling full job templates as raw data following the specification data model, you can use the library to construct model objects of components, such as for StepTemplates, and then assemble the result into a job template. The parse_model function provides a way to do this.

To call parse_model, you will need to provide the list of extensions you want to enable as the supported_extensions argument. Individual model objects can accept inputs differently depending on what extensions are requested in the job template, and the model parsing context holds that list. The functions decode_job_template and decode_environment_template create this context from top-level template fields, but when using parse_model to process interior model types you must provide it explicitly.

import json
from openjd.model import parse_model, model_to_object
from openjd.model.v2023_09 import StepTemplate

extensions_list = ["TASK_CHUNKING"]

step_template = parse_model(
    model=StepTemplate,
    obj={
        "name": "DemoStep",
        "script": {
            "actions": {"onRun": {"command": "python", "args": ["-c", "print('Hello world!')"]}}
        },
    },
    supported_extensions=extensions_list,
)

obj = model_to_object(model=step_template)
print(json.dumps(obj, indent=2))

You can also construct the individual elements of the template from the model object types. This can be more effort than using parse_model depending on how the enabled extensions affect processing. You will need to create a ModelParsingContext object to hold the extensions list, and pass it to any model object constructors that need it.

import json
from openjd.model import model_to_object
from openjd.model.v2023_09 import (
    StepTemplate,
    StepScript,
    StepActions,
    Action,
    ArgString,
    CommandString,
    ModelParsingContext,
)

context = ModelParsingContext(supported_extensions=["TASK_CHUNKING"])

step_template = StepTemplate(
    name="DemoStep",
    script=StepScript(
        actions=StepActions(
            onRun=Action(
                command=CommandString("python", context=context),
                args=[
                    ArgString("-c", context=context),
                    ArgString("print('Hello world!')", context=context),
                ],
            )
        )
    ),
)

obj = model_to_object(model=step_template)
print(json.dumps(obj, indent=2))

Creating a Job from a Job Template

import os
from pathlib import Path
from openjd.model import (
    DecodeValidationError,
    create_job,
    decode_job_template,
    preprocess_job_parameters
)

job_template_path = Path("/absolute/path/to/job/template.json")
job_template = decode_job_template(
    template={
        "name": "DemoJob",
        "specificationVersion": "jobtemplate-2023-09",
        "parameterDefinitions": [
            { "name": "Foo", "type": "INT" }
        ],
        "steps": [
            {
                "name": "DemoStep",
                "script": {
                    "actions": {
                        "onRun": { "command": "python", "args": [ "-c", "print(r'Foo={{Param.Foo}}')" ] }
                    }
                }
            }
        ]
    }
)
try:
    parameters = preprocess_job_parameters(
        job_template=job_template,
        job_parameter_values={
            "Foo": "12"
        },
        job_template_dir=job_template_path.parent,
        current_working_dir=Path(os.getcwd())
    )
    job = create_job(
        job_template=job_template,
        job_parameter_values=parameters
    )
except (DecodeValidationError, RuntimeError) as e:
    print(str(e))

Working with Step dependencies

from openjd.model import (
    StepDependencyGraph,
    create_job,
    decode_job_template
)

job_template = decode_job_template(
    template={
        "name": "DemoJob",
        "specificationVersion": "jobtemplate-2023-09",
        "steps": [
            {
                "name": "Step1",
                "script": {
                    "actions": {
                        "onRun": { "command": "python", "args": [ "-c", "print('Step1')" ] }
                    }
                }
            },
            {
                "name": "Step2",
                "dependencies": [ { "dependsOn": "Step1" }, { "dependsOn": "Step3" }],
                "script": {
                    "actions": {
                        "onRun": { "command": "python", "args": [ "-c", "print('Step2')" ] }
                    }
                }
            },
            {
                "name": "Step3",
                "script": {
                    "actions": {
                        "onRun": { "command": "echo", "args": [ "Step3" ] }
                    }
                }
            },
        ]
    }
)
job = create_job(job_template=job_template, job_parameter_values={})
dependency_graph = StepDependencyGraph(job=job)

for step in job.steps:
    step_node = dependency_graph.step_node(stepname=step.name)
    if step_node.in_edges:
        name_list = ', '.join(edge.origin.step.name for edge in step_node.in_edges)
        print(f"Step '{step.name}' depends upon: {name_list}")
    if step_node.out_edges:
        name_list = ', '.join(edge.dependent.step.name for edge in step_node.out_edges)
        print(f"The following Steps depend upon '{step.name}': {name_list}")

print(f"\nSteps in topological order: {[step.name for step in dependency_graph.topo_sorted()]}")
# The following Steps depend upon 'Step1': Step2
# Step 'Step2' depends upon: Step1, Step3
# The following Steps depend upon 'Step3': Step2

# Steps in topological order: ['Step1', 'Step3', 'Step2']

Working with a Step's Tasks

from openjd.model import (
    StepParameterSpaceIterator,
    create_job,
    decode_job_template
)

job_template = decode_job_template(
    template={
        "name": "DemoJob",
        "specificationVersion": "jobtemplate-2023-09",
        "steps": [
            {
                "name": "DemoStep",
                "parameterSpace": {
                    "taskParameterDefinitions": [
                        { "name": "Foo", "type": "INT", "range": "1-5" },
                        { "name": "Bar", "type": "INT", "range": "1-5" }
                    ],
                    "combination": "(Foo, Bar)"
                },
                "script": {
                    "actions": {
                        "onRun": {
                            "command": "python",
                            "args": [ "-c", "print(f'Foo={{Task.Param.Foo}}, Bar={{Task.Param.Bar}}"]
                        }
                    }
                }
            },
        ]
    }
)
job = create_job(job_template=job_template, job_parameter_values={})
for step in job.steps:
    iterator = StepParameterSpaceIterator(space=step.parameterSpace)
    print(f"Step '{step.name}' has {len(iterator)} Tasks")
    for param_set in iterator:
        print(param_set)
# Step 'DemoStep' has 5 Tasks
# {'Foo': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='1'), 'Bar': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='1')}
# {'Foo': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='2'), 'Bar': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='2')}
# {'Foo': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='3'), 'Bar': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='3')}
# {'Foo': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='4'), 'Bar': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='4')}
# {'Foo': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='5'), 'Bar': ParameterValue(type=<ParameterValueType.INT: 'INT'>, value='5')}

Downloading

You can download this package from:

Verifying GitHub Releases

See Verifying GitHub Releases for more information.

Security

We take all security reports seriously. When we receive such reports, we will investigate and subsequently address any potential vulnerabilities as quickly as possible. If you discover a potential security issue in this project, please notify AWS/Amazon Security via our vulnerability reporting page or directly via email to AWS Security. Please do not create a public GitHub issue in this project.

License

This project is licensed under the Apache-2.0 License.

About

Provides a Python implementation of the data model for Open Job Description's template schemas.

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors 20