Skip to content

OuedraogoAbdoul/loan_prediction

Repository files navigation

An end to end ML example structure using loan prediction

FastAPI json result from inference

[
    {
        "SVC": {
            "balanced_accuracy_metric": 0.7893435569043885,
            "precision": 0.7724810400866738,
            "recall": 0.8204833141542003,
            "fbeta_score": 0.7957589285714285,
            "roc_auc": 0.7893435569043885,
            "train_time(s)": 6.631224870681763
        }
    }
]

==============================

A template for all type of machine learning settings

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│
└── tox.ini            <- tox file with settings for running tox; see tox.readthedocs.io

About

This project uses the Lending Club loan data to predict whether an individual will paid or default on loan

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published