Skip to content

[Auto Parallel] Add tensor_fusion and overlap in auto dy sharding #72551

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 3 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions paddle/fluid/pybind/tensor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1199,6 +1199,8 @@ void BindTensor(pybind11::module &m) { // NOLINT
self.unsafe_mutable_value()->ShareDataNoCheckWith(src.value());
return self;
})
.def("_numel",
[](DistTensor &self) -> int64_t { return self.value().numel(); })
.def("_share_data_with",
[](DistTensor &self, const DistTensor &src) {
self.unsafe_set_dims(src.dims());
Expand Down
72 changes: 64 additions & 8 deletions python/paddle/amp/auto_cast.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
from __future__ import annotations

import copy
import os
import warnings
from typing import (
TYPE_CHECKING,
Expand Down Expand Up @@ -655,6 +656,30 @@ def amp_guard(
and not amp_global_state().already_register_final_backward_hook
):

def _dtensor_from_local(
local_tensor, mesh, placements, local_tensor_shape=None
):
global_dims = list(local_tensor.shape)
if local_tensor_shape is not None:
global_dims = local_tensor_shape
for idx, placement in enumerate(placements):
if placement.is_shard():
shard_dim = placement.get_dim()
local_dim_size = global_dims[shard_dim]
global_dims[shard_dim] = (
local_dim_size * mesh.shape[idx]
)
place = paddle.framework._current_expected_place()
place = paddle.framework._get_paddle_place(place)

return paddle.Tensor(
local_tensor,
dims=global_dims,
process_mesh=mesh,
placements=placements,
place=place,
)

def master_grad_hook():
# NOTE(lizhiyu): To support semi-auto of dygraph mode, we must
# classify the params of model into different classes according to their process_mesh.
Expand All @@ -674,17 +699,48 @@ def master_grad_hook():
param.process_mesh
].append(param)
amp_global_state().already_classify_params_meshes = True

if len(amp_global_state().mesh2params):
for _, params in amp_global_state().mesh2params.items():
core.eager.set_master_grads(params)
else:
core.eager.set_master_grads(
amp_global_state().model_parameters
)
if not os.getenv("FLAGS_enable_inplace_master_grad") == '1':
if len(amp_global_state().mesh2params):
for _, params in amp_global_state().mesh2params.items():
core.eager.set_master_grads(params)
else:
core.eager.set_master_grads(
amp_global_state().model_parameters
)

amp_global_state().already_register_final_backward_hook = False

def _update_main_grad_hook(param):
@paddle.autograd.no_grad()
def param_hook(tmp_grad):
if tmp_grad is not None and tmp_grad._is_initialized():
if param.main_grad is None:
tmp = core.eager.Tensor(
value=tmp_grad._local_value()
.cast(paddle.float32)
.value(),
place=tmp_grad.place,
name="main_grad@" + param.name,
)
param.main_grad = _dtensor_from_local(
tmp,
tmp_grad.process_mesh,
tmp_grad.placements,
)
else:
param.main_grad._local_value().add_(
tmp_grad._local_value()
)
tmp_grad._clear_data()

return param_hook

if os.getenv("FLAGS_enable_inplace_master_grad") == '1':
for param in amp_global_state().model_parameters:
if not hasattr(param, "main_grad"):
param.main_grad = None
param._register_grad_hook(_update_main_grad_hook(param))

core.eager._add_backward_final_hook(master_grad_hook)
amp_global_state().already_register_final_backward_hook = True

Expand Down
Loading
Loading