Skip to content

Official PyTorch implementation of the paper "Robust Training for Speaker Verification against Noisy Labels" in INTERSPEECH 2023.

Notifications You must be signed in to change notification settings

PunkMale/OR-Gate

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OR-Gate

Official PyTorch implementation of the paper "Robust Training for Speaker Verification against Noisy Labels" in INTERSPEECH 2023.

image

Data preparation

./required_data.sh

Training

./run.sh

  • main.py: Main program framework;
  • parser.py: Parameters and experimental settings.
    • train_list_path: Training file path;
    • device: GPU device;
    • warm_up: The first stage trains the number of epochs (default: warm_up=5), when warm_up=max_epochs is baseline;
    • topk: The value of k in the top-k mechanism (default: topk=90).

Results

VoxCeleb 1 (EERs):

noisy rate 0% 5% 10% 20% 30% 50%
Baseline 4.36 5.30 6.24 7.99 9.78 14.39
OR-Gate 4.08 4.07 4.22 4.28 4.41 5.53

VoxCeleb 2 (EERs):

noisy rate 0% 5% 10% 20% 30% 50%
Baseline 1.69 1.72 1.90 2.21 2.88 4.32
OR-Gate 1.64 1.65 1.62 1.67 1.72 1.97

Acknowledge

This code is based on Lantian Li/Sunine.

Reference

@inproceedings{fang23_interspeech,
  author={Zhihua Fang and Liang He and Hanhan Ma and Xiaochen Guo and Lin Li},
  title={{Robust Training for Speaker Verification against Noisy Labels}},
  year=2023,
  booktitle={Proc. INTERSPEECH 2023},
  pages={3192--3196},
  doi={10.21437/Interspeech.2023-452}
}

Contact

About

Official PyTorch implementation of the paper "Robust Training for Speaker Verification against Noisy Labels" in INTERSPEECH 2023.

Topics

Resources

Stars

Watchers

Forks