Skip to content

Conversation

@thomascao1
Copy link

Proposed changes:

  • ...

Status (please check what you already did):

  • added some tests for the functionality
  • updated the documentation
  • updated the changelog (please check changelog for instructions)
  • reformat files using black (please check Readme for instructions)

- Add detailed Docker deployment instructions
- Include 3 deployment methods: pre-built images, build from source, and docker-compose
- Add configuration examples and troubleshooting section
- Provide Vietnamese language guide for local users
- Analyze Rasa's Vietnamese language capabilities (75-90% accuracy)
- Provide 3 pipeline configurations: basic, advanced, and PyVi-based
- Include training data examples and best practices
- Add performance benchmarks and troubleshooting tips
- Recommend PyVi tokenizer for optimal Vietnamese NLP
- Explain training module purpose and functionality (not code details)
- Cover 4 types of training: full, NLU-only, core-only, and incremental
- Document training process from data preparation to model output
- Include 7 key features: fingerprinting, augmentation, conflict detection, etc.
- Provide real-world examples for flight booking chatbot
- Add best practices and troubleshooting guide
- Explain that Rasa does NOT use LLMs (GPT-4, Claude, etc.)
- Document Rasa's custom transformers (DIETClassifier, TEDPolicy)
- Describe optional pre-trained models (BERT, GPT-2, RoBERTa)
- Compare pre-trained language models vs large language models
- Provide detailed architecture and feature comparison
- Include decision tree for choosing Rasa vs LLM chatbots
- Show 4 methods to integrate Rasa with LLMs
- Add real-world examples and use case recommendations
…with Rasa+LLM integration

- Explain Classification model (Rasa): label selection, predictable, fast
- Explain Generative model (LLM): text generation, flexible, creative
- Detailed comparison with examples and analogies
- 3 real-world approaches: pure Rasa, pure LLM, hybrid (recommended)
- 4 integration methods: LLM fallback, response enhancement, intent clarification, hybrid router
- Include code examples, metrics tracking, cost optimization
- Add best practices: caching, monitoring, prompt engineering, A/B testing
- Provide decision framework for choosing the right approach
…/Claude chatbot

Tạo module tích hợp LLM hoàn chỉnh với các tính năng:
- Hỗ trợ OpenAI GPT-4 và Anthropic Claude
- LLM Fallback khi Rasa confidence thấp
- Response Enhancement cho câu trả lời tự nhiên hơn
- Intent Clarification cho các intent mơ hồ
- Custom Rasa actions tích hợp LLM
- Example hybrid bot với cấu hình đầy đủ
- Hướng dẫn chi tiết bằng tiếng Việt

Module files:
- actions/llm/providers.py: OpenAI + Claude providers
- actions/llm/fallback.py: LLM fallback handler
- actions/llm/response_enhancer.py: Natural response generation
- actions/llm/intent_clarifier.py: Intent disambiguation
- actions/actions_llm.py: Custom Rasa actions
- examples/hybrid_bot/: Complete example bot
- LLM_INTEGRATION_GUIDE_VI.md: Comprehensive documentation
… demos

Tạo hệ thống demo hoàn chỉnh cho chatbot bán sản phẩm IT:

Web Frontend (frontend/):
- index.html: Giao diện hiện đại với hero section, categories, features
- style.css: Responsive design, gradient backgrounds, animations
- script.js: Chat widget tích hợp Rasa + fallback demo mode

Tính năng Frontend:
✅ 6 danh mục sản phẩm: Máy tính, Máy chủ, Switch, Camera, Phần mềm
✅ Chat widget chuyên nghiệp với typing indicator, quick replies
✅ Product cards, price formatting tiếng Việt
✅ Demo mode standalone (không cần Rasa server)
✅ Click-to-demo examples cho từng tính năng

IT Store Chatbot (examples/it_store_bot/):
- domain.yml: 16 intents cho tư vấn sản phẩm IT
- nlu.yml: 200+ training examples tiếng Việt
- actions_it_store.py: 10 custom actions với product database
- config.yml: Pipeline tối ưu cho tiếng Việt

Database Demo:
- 4 laptop (gaming + office): ASUS ROG, MSI, Dell, HP
- 3 máy chủ: Dell PowerEdge, HP ProLiant, Lenovo
- 2 switch: Cisco Catalyst, HPE OfficeConnect
- 2 camera: Hikvision, Dahua
- 3 phần mềm: Windows, Office

Tính năng Chatbot:
🔍 Tìm kiếm sản phẩm theo loại/giá/specs
⚖️ So sánh sản phẩm chi tiết
💡 Tư vấn dựa trên use case
💰 Báo giá + khuyến mãi
🛡️ Chính sách bảo hành
🛠️ Hỗ trợ kỹ thuật

Documentation:
- IT_STORE_DEMO_GUIDE_VI.md: Hướng dẫn demo đầy đủ
  * 5 kịch bản demo cho khách hàng
  * 2 phương án chạy (standalone/full Rasa)
  * Hướng dẫn tùy chỉnh & triển khai
  * Tips demo hiệu quả

Phù hợp cho: Demo bán hàng, POC, training sales team
@CLAassistant
Copy link

CLA assistant check
Thank you for your submission! We really appreciate it. Like many open source projects, we ask that you sign our Contributor License Agreement before we can accept your contribution.
You have signed the CLA already but the status is still pending? Let us recheck it.

…n tools

Tạo hệ thống hướng dẫn và tools đầy đủ cho việc tạo training data:

📚 Main Guide (TRAINING_DATA_GUIDE_VI.md - 1000+ dòng):
- Giải thích 3 loại training data: NLU, Stories, Rules
- Hướng dẫn chi tiết cách viết intents, entities, examples
- Best practices với ví dụ ✅ DO và ❌ DON'T
- Synonyms, Lookup Tables, Regex patterns
- Stories syntax (basic, với entities, OR, checkpoint)
- Rules syntax (simple, conditional, forms)
- 7 ví dụ thực tế (đặt đồ ăn, support, e-commerce...)
- Hướng dẫn test & validate
- Checklist before deploy

📝 Templates (training_templates/):
1. ecommerce_nlu_template.yml (200+ examples)
   - 20+ intents cho e-commerce
   - Entities: product_type, brand, price_range, use_case...
   - Synonyms, lookups, regex patterns

2. ecommerce_stories_template.yml (30+ stories)
   - Basic flows (greet → search → goodbye)
   - Product discovery & comparison
   - Purchase flows (cart → checkout)
   - Order tracking & cancellation
   - Error handling

3. QUICK_REFERENCE.md
   - Cheat sheet syntax (NLU, Stories, Rules)
   - Best practices summary
   - Common commands
   - Common errors & fixes

🛠️ Tools (tools/):
1. generate_training_data.py
   - Auto-generate examples từ templates
   - Entity annotator tự động
   - Data augmentation (synonyms, typos)
   - Built-in validator

2. validate_training_data.py
   - Kiểm tra quality: min/max examples, duplicates
   - Detect intent similarity/overlap
   - Entity usage analysis
   - Beautiful validation report
   - Exit codes cho CI/CD

Features:
✅ Hướng dẫn từ cơ bản đến nâng cao (tiếng Việt)
✅ Templates production-ready cho e-commerce
✅ Auto-generate & validate tools
✅ Best practices với examples cụ thể
✅ Quick reference để tra cứu nhanh
✅ Workflow đề xuất cho beginners

Use Cases:
- Học cách tạo training data từ đầu
- Copy templates để start project nhanh
- Validate data quality trước khi train
- Auto-generate data cho testing
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants