Skip to content

RationAI/lsp-detr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LSP-DETR: Efficient and Scalable Nuclei Segmentation in Whole Slide Images

Matěj Pekár, Vít Musil, Rudolf Nenutil, Petr Holub, Tomáš Brázdil

[arXiv][HF Link 🤗]

LSP-DETR (Local Star Polygon DEtection TRansformer) is a lightweight, efficient, and end-to-end deep learning model for nuclei instance segmentation in histopathological images. It combines a DETR-based transformer decoder with star-convex polygon shape descriptors to enable accurate and fast segmentation without complex post-processing.

Installation

To install the necessary dependencies, follow these steps:

git clone https://github.com/RationAI/lsp-detr.git
cd lsp-detr
uv sync

Training on PanNuke

You need at least 10Gb of GPU memory to train the model.

uv run -m lsp_detr +experiment=PanNuke +data.train_fold=1 +data.val_fold=2 +data.test_fold=3

Citing LSP-DETR

@misc{pekar2026lspdetr,
  title={LSP-DETR: Efficient and Scalable Nuclei Segmentation in Whole Slide Images}, 
  author={Matěj Pekár and Vít Musil and Rudolf Nenutil and Petr Holub and Tomáš Brázdil},
  year={2026},
  eprint={2601.03163},
  archivePrefix={arXiv},
  primaryClass={cs.CV},
  url={https://arxiv.org/abs/2601.03163}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •