Matěj Pekár, Vít Musil, Rudolf Nenutil, Petr Holub, Tomáš Brázdil
LSP-DETR (Local Star Polygon DEtection TRansformer) is a lightweight, efficient, and end-to-end deep learning model for nuclei instance segmentation in histopathological images. It combines a DETR-based transformer decoder with star-convex polygon shape descriptors to enable accurate and fast segmentation without complex post-processing.
To install the necessary dependencies, follow these steps:
git clone https://github.com/RationAI/lsp-detr.git
cd lsp-detr
uv syncYou need at least 10Gb of GPU memory to train the model.
uv run -m lsp_detr +experiment=PanNuke +data.train_fold=1 +data.val_fold=2 +data.test_fold=3@misc{pekar2026lspdetr,
title={LSP-DETR: Efficient and Scalable Nuclei Segmentation in Whole Slide Images},
author={Matěj Pekár and Vít Musil and Rudolf Nenutil and Petr Holub and Tomáš Brázdil},
year={2026},
eprint={2601.03163},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2601.03163}
}