Skip to content

Ricardo-Ping/ChaoRec

Repository files navigation

ChaoRec(超级推荐)

ChaoRec 是基于 Python 和 PyTorch 开发的,用于在统一、全面和高效的框架内复制和开发推荐算法,以达到研究目的。

主要包括一般推荐和多模态推荐。

目前的一般推荐模型有27个:

  • BPR(2016): Bayesian Personalized Ranking with Multi-Channel User Feedback
  • DGCF(2020): Disentangled Graph Collaborative Filtering
  • NGCF(2019): Neural Graph Collaborative Filtering
  • LightGCN(2020): Simplifying and Powering Graph Convolution Network for Recommendation
  • MacridVAE(2019): Learning Disentangled Representations for Recommendation
  • MultVAE(2018): Variational Autoencoders for Collaborative Filtering
  • SGL(2021): Self-supervised Graph Learning for Recommendation
  • NCL(2022): Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning
  • LightGCL(2023): Simple Yet Effective Graph Contrastive Learning for Recommendation
  • LayerGCN(2022): Layer-refined Graph Convolutional Networks for Recommendation
  • HCCF(2022): Hypergraph Contrastive Collaborative Filtering
  • DCCF(2023): Disentangled Contrastive Collaborative Filtering
  • AdaGCL(2023): Adaptive Graph Contrastive Learning for Recommendation
  • VGCL(2023): Generative-Contrastive Graph Learning for Recommendation
  • SimGCL(2022): Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for Recommendation
  • XSimGCL(2023): Towards Extremely Simple Graph Contrastive Learning for Recommendation
  • GraphAug(2024): Graph Augmentation for Recommendation
  • SelfCF(2023): A Simple Framework for Self-supervised Collaborative Filtering
  • DHCF(2020): Dual Channel Hypergraph Collaborative Filtering
  • LightGODE(2024): Do We Really Need Graph Convolution During Training? Light Post-Training Graph-ODE for Efficient Recommendation
  • FKAN-GCF(2024): FourierKAN-GCF: Fourier Kolmogorov-Arnold Network - An Effective and Efficient Feature Transformation for Graph Collaborative Filtering
  • DualVAE(2024): Dual Disentangled Variational AutoEncoder for Recommendation
  • GFormer(2023): Graph Transformer for Recommendation
  • LightGODE(2024): Do We Really Need Graph Convolution During Training? Light Post-Training Graph-ODE for Efficient Recommendation
  • BSPM(2023):Blurring-Sharpening Process Models for Collaborative Filtering (源代码使用的不是留一法预测,并且直接预测交互,所以在我们框架内性能较差)
  • DiffRec(2023):Diffusion Recommender Model
  • CF-Diff(2024):Collaborative Filtering Based on Diffusion Models: Unveiling the Potential of High-Order Connectivity

目前的多模态推荐模型有23个:

  • VBPR(2016): Visual Bayesian Personalized Ranking from Implicit Feedback
  • MMGCN(2019): Multi-modal Graph Convolution Network for Personalized Recommendation of Micro-video
  • GRCN(2020): Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback
  • MGAT(2020): Multimodal Graph Attention Network for Recommendation
  • LATTICE(2021): Mining Latent Structures for Multimedia Recommendation
  • MICRO(2022): Latent Structure Mining with Contrastive Modality Fusion for Multimedia Recommendation
  • FREEDOM(2023): A Tale of Two Graphs: Freezing and Denoising Graph Structures for Multimodal Recommendation
  • DualGNN(2023): Dual Graph Neural Network for Multimedia Recommendation
  • DRAGON(2023): Enhancing Dyadic Relations with Homogeneous Graphs for Multimodal Recommendation
  • BM3(2023): Bootstrap Latent Representations for Multi-modal Recommendation
  • SLMRec(2022): Self-supervised Learning for Multimedia Recommendation
  • MGCL(2023): Multimodal Graph Contrastive Learning for Multimedia-Based Recommendation
  • MGCN(2023): Multi-View Graph Convolutional Network for Multimedia Recommendation
  • POWERec(2024): Prompt-based and weak-modality enhanced multimodal recommendation
  • MMGCL(2022): Multi-modal Graph Contrastive Learning for Micro-video Recommendation
  • MVGAE(2022): Multi-Modal Variational Graph Auto-Encoder for Recommendation Systems
  • MMSSL(2023): Multi-Modal Self-Supervised Learning for Recommendation
  • LGMRec(2024): Local and Global Graph Learning for Multimodal Recommendation
  • MENTOR(2024): Multi-level Self-supervised Learning for Multimodal Recommendation
  • MCLN(2023): Multimodal Counterfactual Learning Network for Multimedia-based Recommendation
  • DiffMM(2024): Multi-Modal Diffusion Model for Recommendation
  • LightGT(2023): A Light Graph Transformer for Multimedia Recommendation (受限于数据集中的交互项目长度,性能也不足)
  • SMORE(2025): Spectrum-based Modality Representation Fusion Graph Convolutional Network for Multimodal Recommendation

现有模型大部分按照原作者代码进行改写,如果发现有错误欢迎指正!

About

general recommendation system and multimodal recommendation system

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages