Skip to content

SCUT-CCNL/EHSnet

Repository files navigation

Explicit High-level Semantic Network for Domain Generalization in Hyperspectral Image Classification

This is the official code of EHSnet. Paper web page: Explicit High-level Semantic Network for Domain Generalization in Hyperspectral Image Classification.

Citation


@ARTICLE{10750220,
  author={Wang, Xusheng and Dong, Shoubin and Zheng, Xiaorou and Lu, Runuo and Jia, Jianxin},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={Explicit High-level Semantic Network for Domain Generalization in Hyperspectral Image Classification}, 
  year={2024},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TGRS.2024.3495765}}

Dataset

You can download the Pavia and Houston dataset on here.

As for the XS dataset, please contact the authors below:

The dataset directory should look like this:


datasets
├── Houston
│   ├── Houston13.mat
│   ├── Houston13_7gt.mat
│   ├── Houston18.mat
│   └── Houston18_7gt.mat
├── Pavia
│   ├── paviaC.mat
│   ├── paviaC_7gt.mat
│   ├── paviaU.mat
│   └── paviaU_7gt.mat
└── XS
    ├── XS_0.mat
    ├── XS_gt_0.mat
    ├── XS_1.mat
    └── XS_gt_1.mat

Requirement

  • CUDA Version: 11.3
  • PyTorch version: 1.11.0
  • Python version: 3.8.10
  • You can download the the CLIP pre-training weight ViT-B-32.pt here.

Usage

  • For Houston dataset, you can run the train.py with python train.py --dataset Houston --alpha 0.1 --beta 1e+0 --re_ratio 5
  • For Pavia dataset, you can run the train.py with python train.py --dataset Pavia --alpha 0.7 --beta 1e+0 --re_ratio 1
  • For XS dataset, you can run the train.py with python train.py --dataset XS --alpha 0.3 --beta 1e-1 --re_ratio 1 --training_sample_ratio 0.1 --num_epoch 100

Acknowledgment

Our code is based on the method of LDGnet. Thanks for their work.

About

This is the code of EHSnet

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages