Explicit High-level Semantic Network for Domain Generalization in Hyperspectral Image Classification
This is the official code of EHSnet. Paper web page: Explicit High-level Semantic Network for Domain Generalization in Hyperspectral Image Classification.
@ARTICLE{10750220,
author={Wang, Xusheng and Dong, Shoubin and Zheng, Xiaorou and Lu, Runuo and Jia, Jianxin},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Explicit High-level Semantic Network for Domain Generalization in Hyperspectral Image Classification},
year={2024},
volume={},
number={},
pages={1-1},
doi={10.1109/TGRS.2024.3495765}}
You can download the Pavia and Houston dataset on here.
As for the XS dataset, please contact the authors below:
The dataset directory should look like this:
datasets
├── Houston
│ ├── Houston13.mat
│ ├── Houston13_7gt.mat
│ ├── Houston18.mat
│ └── Houston18_7gt.mat
├── Pavia
│ ├── paviaC.mat
│ ├── paviaC_7gt.mat
│ ├── paviaU.mat
│ └── paviaU_7gt.mat
└── XS
├── XS_0.mat
├── XS_gt_0.mat
├── XS_1.mat
└── XS_gt_1.mat
- CUDA Version: 11.3
- PyTorch version: 1.11.0
- Python version: 3.8.10
- You can download the the CLIP pre-training weight ViT-B-32.pt here.
- For Houston dataset, you can run the
train.pywithpython train.py --dataset Houston --alpha 0.1 --beta 1e+0 --re_ratio 5 - For Pavia dataset, you can run the
train.pywithpython train.py --dataset Pavia --alpha 0.7 --beta 1e+0 --re_ratio 1 - For XS dataset, you can run the
train.pywithpython train.py --dataset XS --alpha 0.3 --beta 1e-1 --re_ratio 1 --training_sample_ratio 0.1 --num_epoch 100
Our code is based on the method of LDGnet. Thanks for their work.