A deep learning-based healthcare application that leverages YOLO and Computer Vision techniques to detect and classify chest-related diseases (e.g., pneumonia, tuberculosis) from X-ray images. Built using Python, OpenCV, YOLOv5, and deployed via a Streamlit web app.
- ✅ Detect chest anomalies using YOLOv5
- ✅ Classify diseases with CNNs or pretrained models
- ✅ Streamlit-based interactive web interface
- ✅ Visualization with bounding boxes and confidence scores
- ✅ Real-time predictions and batch processing support
Early detection of chest diseases such as:
- Pneumonia
- Tuberculosis
- Cardiomegaly
- COVID-19 (optional)
- Normal (no abnormality)
disease-detection-cv/ ├── data/ ├── models/ ├── notebooks/ ├── src/ │ ├── detector.py │ ├── classifier.py │ ├── preprocessing.py │ ├── utils.py ├── streamlit_app.py ├── requirements.txt ├── README.md └── yolov5/
- 🔬 YOLOv5 Detection
- 🧠 Classification
- 🌐 Web App
- 📊 Performance Metrics
- 📸 Visualization
git clone https://github.com/yourusername/disease-detection-cv.git
cd disease-detection-cv
pip install -r requirements.txt
Download trained YOLOv5 weights and place them in the models/ directory.
streamlit run streamlit_app.pyUpload a chest X-ray image and get disease predictions with bounding boxes and confidence scores.
- Label dataset using Roboflow or LabelImg
- Convert to YOLO format
- Train YOLOv5:
python yolov5/train.py --img 640 --batch 16 --epochs 100 --data data.yaml --weights yolov5s.pt
- YOLOv5 Metrics: [email protected], Precision, Recall
- Classification Metrics: Accuracy, ROC-AUC, Confusion Matrix
- Visual Results: Bounding boxes on test images
| Disease | Precision | Recall | F1 Score |
|---|---|---|---|
| Pneumonia | 0.92 | 0.89 | 0.90 |
| Tuberculosis | 0.88 | 0.87 | 0.87 |
| Cardiomegaly | 0.90 | 0.91 | 0.90 |
| Normal | 0.95 | 0.96 | 0.95 |
- YOLOv5
- OpenCV
- PyTorch
- TensorFlow/Keras (optional)
- Streamlit
- Matplotlib, Seaborn
- Pandas, NumPy
Saravanan
📧 [email protected]
🌐 LinkedIn Profile
This project is licensed under the MIT License - see the LICENSE file for details.