Skip to content

Shindevrp/Wildlife--BLIP-2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Wildlife BLIP-2 Fine-Tuning Project

This project demonstrates how to fine-tune the BLIP-2 model for wildlife image captioning and visual question answering (VQA) using your own dataset, and provides a user-friendly web interface for testing your model.

Folder Structure

project/
│
├── images/             # Place your images here
│   ├── elephant.jpg
│   ├── deer.jpg
│   └── ...
│
├── data.json           # Annotations file (see format below)
├── finetune_blip2.py   # Fine-tuning script
├── app.py              # Streamlit web app for inference
├── requirements.txt    # Python dependencies
└── README.md           # This file

Dataset Format

Example data.json:

[
  {
    "image": "images/elephant.jpg",
    "caption": "A herd of elephants crossing the river."
  },
  {
    "image": "images/deer.jpg",
    "question": "Is there a deer in the image?",
    "answer": "Yes"
  }
]
  • For image captioning, use the caption field.
  • For VQA, use question and answer fields.

Setup Environment

Install the required packages:

pip install -r requirements.txt

Fine-Tuning

Run the fine-tuning script:

python finetune_blip2.py

Web Frontend (Streamlit)

Run the Streamlit app for batch image upload, gallery, and history features:

streamlit run app.py
  • Upload one or more images.
  • Select Caption or VQA mode.
  • For VQA, enter your question.
  • View results, gallery, and history in the web UI.

Inference Example (Python)

After training, you can generate captions or answers using the model in Python. See finetune_blip2.py for details.

Tips

  • Add more images and annotations to improve performance.
  • You can use the same script for both captioning and VQA tasks.
  • For deployment, consider converting the model to TorchScript or ONNX for edge devices.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages