A comprehensive collection of enterprise-grade, multi-agent AI systems built with CrewAI. Each project demonstrates collaborative AI agents solving complex real-world problems through intelligent task orchestration and domain-specific expertise.
graph LR
A[Stock Researcher] --> E[Multi-Agent System]
B[Cricket Analytics] --> E
C[Budget Knowledge] --> E
D[Research Writer] --> E
E --> F[Intelligent Solutions]
This workspace contains multiple CrewAI projects that showcase advanced multi-agent AI capabilities:
- Stock Researcher: Financial analysis with S&P 500 benchmarking and investment recommendations
- Cricket Performance Analysis: Sports analytics with player performance metrics and visualizations
- Union Budget Knowledge: Government budget analysis and policy query system
- Research Writer Crew: Automated research and article generation
# Navigate to workspace root
cd /Users/shinde/Desktop/Talbot/learning_crewai
# Activate shared virtual environment
source venv/bin/activate
# Create .env file with API keys
cp .env.example .env
# Edit .env and add your API keys:
# OPENAI_API_KEY=sk-...
# SERPER_API_KEY=...# Stock Researcher
cd stock_researcher/src
python main.py "AAPL"
# Cricket Performance Analysis
cd cricketer_performance_analysis/src
python main.py "Virat Kohli" "2023"
# Union Budget Knowledge
cd union_budget_knowledge
PYTHONPATH=src python -c 'from union_budget_knowledge.main import kickoff; kickoff()'
# Research Writer Crew
cd research_writer_crew/src
python main.pyAdvanced financial analysis system with S&P 500 benchmarking
- Agents: 6 specialized financial analysts
- Capabilities:
- Real-time stock data retrieval
- Comparative S&P 500 analysis
- Investment recommendations (BUY/HOLD/SELL)
- Professional visualization and reporting
Quick Run:
cd stock_researcher/src
python main.py "AAPL" # Analyze Apple stockSports analytics and player performance evaluation system
- Agents: 3 specialized sports analysts
- Capabilities:
- Cricket player statistics aggregation
- Performance metric calculations
- Format-wise analysis (Test/ODI/T20)
- Professional visualization and reporting
Quick Run:
cd cricketer_performance_analysis/src
python main.py "Virat Kohli" "2023"Government budget analysis and policy query system
- Agents: Multi-agent budget analysis system
- Capabilities:
- PDF document processing and indexing
- Natural language budget queries
- Policy analysis and insights
- Interactive Q&A interface
Quick Run:
cd union_budget_knowledge
PYTHONPATH=src python -c 'from union_budget_knowledge.main import kickoff; kickoff()'Automated research and article generation system
- Agents: Research and writing specialists
- Capabilities:
- Topic research and data gathering
- Article outline generation
- Content writing and editing
- SEO optimization
Quick Run:
cd research_writer_crew/src
python main.pyLocation: docs/
Comprehensive learning resources and guides:
- Complete A-Z Guide to CrewAI - The ultimate 6,000+ line reference covering:
- All CrewAI concepts from Agents to Zero-to-Production
- Architecture patterns and best practices
- Prompt engineering techniques
- Production deployment strategies
- Real-world code examples
- Debugging and monitoring
Location: venv/
All projects use a shared Python virtual environment for efficient dependency management.
Setup:
# One-time setup (already done)
python3 -m venv venv
source venv/bin/activate
pip install crewai[tools] python-dotenv pypdf2 litellm
# Subsequent uses
source venv/bin/activateLocation: .env
Centralized API key management for all projects:
# Required for all projects
OPENAI_API_KEY=sk-your_openai_key
SERPER_API_KEY=your_serper_key
# Optional project-specific settings
LOG_LEVEL=INFO
DEBUG_MODE=falselearning_crewai/
├── .env # Shared environment variables
├── .gitignore # Git ignore rules
├── venv/ # Shared virtual environment
│ ├── bin/
│ ├── lib/
│ └── ...
│
├── docs/ # Documentation
│ └── crew_ai_context.md # Complete A-Z Guide to CrewAI
│
├── stock_researcher/ # Financial analysis project
│ ├── src/
│ │ ├── main.py
│ │ ├── crew.py
│ │ └── config/
│ │ ├── agents.yaml
│ │ └── tasks.yaml
│ └── README.md
│
├── cricketer_performance_analysis/ # Sports analytics project
│ ├── src/
│ │ ├── main.py
│ │ ├── crew_setup.py
│ │ └── config/
│ │ ├── agents.yaml
│ │ └── tasks.yaml
│ └── README.md
│
├── union_budget_knowledge/ # Budget analysis project
│ ├── src/
│ │ ├── main.py
│ │ ├── crews/
│ │ │ └── budget_response_crew/
│ │ │ ├── budget_crew.py
│ │ │ └── config/
│ │ │ ├── agents.yaml
│ │ │ └── tasks.yaml
│ │ └── tools/
│ ├── Union_Budget_Analysis-2023-24.pdf
│ └── README.md
│
├── research_writer_crew/ # Research & writing project
│ ├── src/
│ │ ├── main.py
│ │ ├── crew_setup.py
│ │ └── config/
│ │ ├── agents.yaml
│ │ └── tasks.yaml
│ └── README.md
│
└── README.md # This file
- OS: macOS, Linux, or Windows
- Python: 3.10, 3.11, 3.12, or 3.13
- Memory: Minimum 4GB RAM (8GB recommended)
- Disk Space: 5GB for dependencies
-
OpenAI API Key
- Get at: https://platform.openai.com/api-keys
- Cost: Pay-as-you-go (free tier available)
- Models: GPT-4, GPT-3.5-turbo
-
Serper API Key (for web search projects)
- Get at: https://serper.dev
- Cost: Free tier (100 searches/month), paid plans from $5/month
- Used by: Stock Researcher, Cricket Analysis
# Clone or navigate to the workspace
cd /Users/shinde/Desktop/Talbot/learning_crewai
# Create virtual environment (if not exists)
python3 -m venv venv
# Activate virtual environment
source venv/bin/activate
# Install dependencies
pip install -r requirements.txt
# Or install manually:
pip install crewai[tools]>=0.86.0 python-dotenv pypdf2 litellm
# Create .env file
cp .env.example .env
# Edit .env with your API keys
nano .env# Activate virtual environment
cd /Users/shinde/Desktop/Talbot/learning_crewai
source venv/bin/activate
# Navigate to desired project
cd <project_name>
# Run the project
python main.py [arguments]Update the .env file in the workspace root:
# File: /Users/shinde/Desktop/Talbot/learning_crewai/.env
# OpenAI Configuration (Required)
OPENAI_API_KEY=sk-your_key_here
OPENAI_MODEL_NAME=gpt-4 # or gpt-3.5-turbo
# Serper Configuration (Required for Stock & Cricket projects)
SERPER_API_KEY=your_serper_key_here
# Logging Configuration (Optional)
LOG_LEVEL=INFO # DEBUG, INFO, WARNING, ERROR
DEBUG_MODE=false
# Project Settings (Optional)
STOCK_SYMBOL=AAPL
CRICKETER_NAME=Virat Kohli
YEAR=2023graph TB
subgraph Workspace["Learning CrewAI Workspace"]
subgraph Resources["Shared Resources"]
ENV[.env Configuration]
VENV[Python Virtual Environment]
DOCS[Documentation Hub]
end
subgraph Projects["Multi-Agent Projects"]
STOCK[Stock Researcher<br/>Financial Analysis]
CRICKET[Cricket Analytics<br/>Sports Intelligence]
BUDGET[Budget Knowledge<br/>Policy Analysis]
WRITER[Research Writer<br/>Content Creation]
end
subgraph Framework["CrewAI Framework"]
AGENTS[Specialized Agents]
TASKS[Orchestrated Tasks]
TOOLS[Integrated Tools]
end
subgraph External["External Services"]
OPENAI[OpenAI GPT-4]
SERPER[Serper Search API]
DATA[Data Sources]
end
end
ENV --> Projects
VENV --> Projects
DOCS --> Projects
STOCK --> Framework
CRICKET --> Framework
BUDGET --> Framework
WRITER --> Framework
Framework --> External
AGENTS -.-> TASKS
TASKS -.-> TOOLS
style Workspace fill:#f9f9f9,stroke:#333,stroke-width:2px
style Resources fill:#e3f2fd,stroke:#1976d2,stroke-width:2px
style Projects fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px
style Framework fill:#fff3e0,stroke:#f57c00,stroke-width:2px
style External fill:#e8f5e9,stroke:#388e3c,stroke-width:2px
sequenceDiagram
participant User
participant Project
participant CrewAI
participant Agents
participant LLM
participant Tools
User->>Project: Execute Command
Project->>CrewAI: Initialize Crew
CrewAI->>Agents: Assign Tasks
loop Task Execution
Agents->>LLM: Process Information
LLM-->>Agents: Generate Response
Agents->>Tools: Use External Tools
Tools-->>Agents: Return Data
end
Agents->>CrewAI: Complete Tasks
CrewAI->>Project: Aggregate Results
Project->>User: Deliver Output
| Architecture | Configuration | Integration | Output |
|---|---|---|---|
| Multi-agent system | YAML-based | Real-time APIs | Professional reports |
| Specialized roles | Environment vars | OpenAI & Serper | Structured data |
| Task orchestration | Modular design | External tools | Rich formatting |
- Multi-agent architecture with specialized roles
- YAML-based configuration for agents and tasks
- Real-time API integration (OpenAI, Serper)
- Comprehensive logging and error handling
- Professional output formatting
- Modular and extensible design
- Environment-based configuration
| Project | Key Features |
|---|---|
| Stock Researcher | Real-time stock data, benchmark analysis, investment ratings |
| Cricket Analysis | Player statistics, format analysis, performance visualization |
| Budget Knowledge | PDF processing, policy analysis, interactive Q&A |
| Research Writer | Topic research, outline generation, content writing |
cd stock_researcher/src
python main.py "AAPL" # Apple
python main.py "GOOGL" # Google
python main.py "MSFT" # MicrosoftOutput: Investment recommendations, S&P 500 comparison, analysis files
cd cricketer_performance_analysis/src
python main.py "Virat Kohli" "2023"
python main.py "Babar Azam" "2022"
python main.py "Steve Smith" "2021"Output: Performance statistics, visualizations, analysis reports
cd union_budget_knowledge
PYTHONPATH=src python -c 'from union_budget_knowledge.main import kickoff; kickoff()'Interactive Mode: Ask budget-related questions, get instant analysis
cd research_writer_crew/src
python main.pyInteractive Mode: Enter topic, get comprehensive research and article
- Create project structure:
mkdir my_new_project
cd my_new_project
mkdir -p src/my_new_project/config- Create configuration files:
# agents.yaml
touch src/my_new_project/config/agents.yaml
# tasks.yaml
touch src/my_new_project/config/tasks.yaml- Create crew file:
touch src/my_new_project/crew_setup.py- Create main entry point:
touch src/my_new_project/main.py- Update root README to list the new project
Each project can be extended by:
- Adding new agents in
config/agents.yaml - Adding new tasks in
config/tasks.yaml - Creating custom tools in the
tools/directory - Modifying crew orchestration in
crew.pyorcrew_setup.py
source /Users/shinde/Desktop/Talbot/learning_crewai/venv/bin/activate# Reinstall dependencies
pip install crewai[tools] python-dotenv# Verify .env file exists and contains keys
cat /Users/shinde/Desktop/Talbot/learning_crewai/.env
export OPENAI_API_KEY=your_key# Free up space
rm -rf ~/.cache/pip
pip cache purgeEnable detailed logging:
export LOG_LEVEL=DEBUG
export DEBUG_MODE=true
python main.py- OpenAI: Monitor at https://platform.openai.com/account/usage
- Serper: Check quota at https://serper.dev/dashboard
- Use GPT-3.5-turbo for cost savings
- Cache agent responses when possible
- Batch process queries
- Simple queries: 2-5 seconds
- Complex analysis: 10-30 seconds
- Large document processing: 1-2 minutes
- Never commit
.envfile - Rotate API keys regularly
- Monitor API usage for unauthorized access
- Use environment variables only, never hardcode keys
- Keep dependencies updated
# Create feature branch
git checkout -b feature/new-feature
# Make changes
git add .
# Commit with descriptive message
git commit -m "feat: description of changes"
# Push to repository
git push origin feature/new-feature- Follow PEP 8 style guide
- Add type hints to functions
- Write comprehensive docstrings
- Add error handling
- Update README for user-facing changes
- API usage and costs
- Agent performance (response time, accuracy)
- Error rates and failures
- User query patterns
# Recent logs
tail -f <project>/run_output.txt
# Search for errors
grep -i error <project>/run_output.txt- CrewAI Docs: https://docs.crewai.com/
- OpenAI API: https://platform.openai.com/docs/
- Serper API: https://serper.dev/docs
- Python Docs: https://docs.python.org/3/
- Database integration for persistent storage
- Web UI dashboard
- Advanced caching layer
- Multi-language support
- Real-time streaming responses
- Analytics dashboard
This project collection is provided as-is for educational and commercial use.
| Version | Date | Status |
|---|---|---|
| 1.0.0 | Dec 6, 2025 | Production Ready |
| 0.9.0 | Dec 5, 2025 | Beta |
| 0.1.0 | Dec 4, 2025 | Alpha |
Maintained By: Shinde Vinayak Rao Patil Last Updated: December 6, 2025
Note: For project-specific documentation, refer to individual project READMEs linked above.
