Detecting unfair gameplay using intelligent telemetry
GameGuard AI is a full-stack machine learning application built to detect cheating behavior in online multiplayer games. It analyzes gameplay telemetry, system info, and behavioral patterns to flag potential cheaters using an intelligent model.
- 📄 Upload game telemetry data as CSV
- 🧠 Detect cheaters based on system + gameplay signals
- 📊 View predictions with confidence levels
- 🔐 Flags like "VM Detected" and "Secure Boot Off"
- 🌙 Light/Dark mode toggle
- 🔄 Real-time feedback with loading indicators
- 📜 Scrollable prediction result table
| Frontend | Backend | ML/Infra |
|---|---|---|
| React + Vite + TailwindCSS | Flask + Python | Scikit-learn, Pandas, Joblib |
GameGuardAI/
├── backend/
│ ├── app.py # Flask server
│ └── models/ # ML model + utilities
│ ├── model.py
│ ├── *.pkl # Encoders, model, imputers
│ ├── train.csv # Training data
│ ├── test.py # Manual test runner
│ └── sample_test1.csv # Sample test files
├── frontend/
│ ├── src/ # React + Tailwind frontend
│ │ ├── GameGuardAI.jsx
│ │ ├── App.jsx
│ │ └── index.css, main.jsx
│ └── public/
│ └── vite.config.js
└── README.md
git clone https://github.com/yourusername/GameGuardAI.git
cd GameGuardAIcd backend
pip install -r requirements.txt
python app.pyIf requirements.txt is not yet created, install manually:
pip install flask flask-cors pandas scikit-learn joblibcd ../frontend
npm install
npm run devThe frontend runs on: http://localhost:5173
Make sure your Flask backend is running on http://localhost:5000
test_sample_1.csv: Mixed fair and flagged playerstest_sample_3.csv: All clean playerssample_test_valid_5_rows.csv: 5-row valid structure for testing
-
Trained on telemetry + system behavior features
-
Uses
RandomForestClassifier(or similar) for classification -
Handles class imbalance and unseen categorical values
-
Prediction includes:
- Player ID
- Classification (Cheater / Fair)
- Confidence Score
- Behavior Flags
31.07.2025_20.34.48_REC.mp4
- Siddhi Nagapure
- Special thanks to collaborators and dataset providers
This project is open-source and available under the MIT License.