π Installation β’ π¦ Packages β’ π Usage example β’ π Webapp β’ π Documentation β’ π License
This monorepo currently consists of the following packages to handle time-series data:
sinapsis-darts-forecasting
Install using your package manager of choice. We encourage the use of uv
Example with uv
:
uv pip install sinapsis-darts-forecasting --extra-index-url https://pypi.sinapsis.tech
or with raw pip
:
pip install sinapsis-darts-forecasting --extra-index-url https://pypi.sinapsis.tech
Important
Templates in each package may require extra dependencies. For development, we recommend installing the package with all the optional dependencies:
with uv
:
uv pip install sinapsis-darts-forecasting[all] --extra-index-url https://pypi.sinapsis.tech
or with raw pip
:
pip install sinapsis-darts-forecasting[all] --extra-index-url https://pypi.sinapsis.tech
Tip
You can also install all the packages within this project:
uv pip install sinapsis-time-series-forecasting[all] --extra-index-url https://pypi.sinapsis.tech
Packages summary
- Sinapsis Darts Forecasting
- Dataframe Loader
Convert a pandas Dataframe into a Darts TimeSeries object. - Darts Transforms
Apply several data transformations using Darts transformers to different sources in the time series packet. - Darts Models
Fit and predict data inside the container using Darts baseline, statistical, machine learning and deep learning models.
- Dataframe Loader
Tip
Use CLI command sinapsis info --all-template-names
to show a list with all the available Template names installed with Sinapsis Time Series Forecasting.
Tip
Use CLI command sinapsis info --example-template-config TEMPLATE_NAME
to produce an example Agent config for the Template specified in TEMPLATE_NAME.
For example, for XGBModelWrapper use sinapsis info --example-template-config XGBModelWrapper
to produce the following example config:
agent:
name: my_test_agent
templates:
- template_name: InputTemplate
class_name: InputTemplate
attributes: {}
- template_name: XGBModelWrapper
class_name: XGBModelWrapper
template_input: InputTemplate
attributes:
forecast_horizon: 10
xgbmodel_init:
lags: null
lags_past_covariates: null
lags_future_covariates: null
output_chunk_length: 1
output_chunk_shift: 0
add_encoders: null
likelihood: null
quantiles: null
random_state: null
multi_models: true
use_static_covariates: true
Example agent config
agent:
name: XGBLSTMForecastingAgent
description: ''
templates:
- template_name: InputTemplate
class_name: InputTemplate
attributes: {}
- template_name: TimeSeriesDataframeLoader
class_name: TimeSeriesDataframeLoader
template_input: InputTemplate
attributes:
apply_to: ["content", "past_covariates", "future_covariates"]
from_dataframe_kwargs:
time_col: "Date"
fill_missing_dates: True
freq: "D"
- template_name: MissingValuesFiller
class_name: MissingValuesFillerWrapper
template_input: TimeSeriesDataframeLoader
attributes:
method: "transform"
missingvaluesfiller_init: {}
apply_to: ["content", "past_covariates", "future_covariates"]
transform_kwargs:
method: "linear"
- template_name: TimeSeries
class_name: XGBModelWrapper
template_input: MissingValuesFiller
attributes:
forecast_horizon: 100
xgbmodel_init:
lags: 30
lags_past_covariates: 30
output_chunk_length: 100
random_state: 42
n_estimators: 200
learning_rate: 0.1
max_depth: 6
To run, simply use:
sinapsis run name_of_the_config.yml
The webapp provides an intuitive interface for data loading, preprocessing, and forecasting. The webapp supports CSV file uploads, visualization of historical data, and forecasting.
Note
Kaggle offers a variety of datasets for forecasting. In this-link from Kaggle, you can find a Bitcoin historical dataset. You can download it to use it in the app. Past and future covariates datasets are optional for the analysis.
Important
Note that if you use another dataset, you need to change the attributes of the TimeSeriesDataframeLoader
Important
To run the app you first need to clone this repository:
git clone [email protected]:Sinapsis-ai/sinapsis-time-series-forecasting.git
cd sinapsis-time-series-forecasting
Note
If you'd like to enable external app sharing in Gradio, export GRADIO_SHARE_APP=True
π³ Docker
IMPORTANT This docker image depends on the sinapsis-nvidia:base image. Please refer to the official sinapsis instructions to Build with Docker.
- Build the sinapsis-time-series-forecasting image:
docker compose -f docker/compose.yaml build
- Start the app container:
docker compose -f docker/compose_apps.yaml up sinapsis-darts-forecasting-gradio -d
- Check the status:
docker logs -f sinapsis-darts-forecasting-gradio
- The logs will display the URL to access the webapp, e.g.:
NOTE: The url can be different, check the output of logs
Running on local URL: http://127.0.0.1:7860
- To stop the app:
docker compose -f docker/compose_apps.yaml down
π» UV
To run the webapp using the uv
package manager, please:
- Create the virtual environment and sync the dependencies:
uv sync --frozen
- Install the wheel:
uv pip install sinapsis-time-series-forecasting[all] --extra-index-url https://pypi.sinapsis.tech
- Run the webapp:
uv run webapps/darts_time_series_gradio_app.py
- The terminal will display the URL to access the webapp, e.g.:
NOTE: The url can be different, check the output of the terminal
Running on local URL: http://127.0.0.1:7860
Documentation for this and other sinapsis packages is available on the sinapsis website
Tutorials for different projects within sinapsis are available at sinapsis tutorials page
This project is licensed under the AGPLv3 license, which encourages open collaboration and sharing. For more details, please refer to the LICENSE file.
For commercial use, please refer to our official Sinapsis website for information on obtaining a commercial license.