Skip to content

Web-ready standardized file processing and serialization. Read, write, convert and send files. Including image, audio, video and any other file. Easily convert between numpy, base64, bytes and more.

License

Notifications You must be signed in to change notification settings

SocAIty/media-toolkit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

88 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

MediaToolkit

Ultra-Fast Python Media Processing β€’ FFmpeg β€’ OpenCV β€’ PyAV

⚑ Lightning-fast β€’ πŸ› οΈ Simple API β€’ πŸ”„ Any Format β€’ 🌐 Web-ready β€’ πŸ–₯️ Cross-platform


MediaToolkit is a high-performance Python library for processing images, audio, and video with a unified, developer-friendly API. Built on FFmpeg (PyAV) and OpenCV for production-grade speed and reliability.

Perfect for: AI/ML pipelines, web services, batch processing, media automation, computer vision, and audio analysis.

πŸ“¦ Installation

pip install media-toolkit

Note: Audio/video processing requires FFmpeg. PyAV usually installs it automatically, but if needed, install manually from ffmpeg.org.

⚑ Quick Start

One API for all media types - load from files, URLs, bytes, base64, or numpy arrays:

from media_toolkit import ImageFile, AudioFile, VideoFile, media_from_any

# load any file and convert it to the correct format. This works with smart content detection
audio = media_from_any("media/my_favorite_song.mp3") # -> AudioFile

# Load from any source
image = ImageFile().from_any("https://example.com/image.jpg")
audio = AudioFile().from_file("audio.wav")
video = VideoFile().from_file("video.mp4")
imb = ImageFile().from_base64("data:image/png;base64,...")
# Convert to any format
image_array = image.to_np_array()      # β†’ numpy array (H, W, C)
audio_array = audio.to_np_array()      # β†’ numpy array (samples, channels)
image_base64 = image.to_base64()       # β†’ base64 string
video_bytes = video.to_bytes_io()      # β†’ BytesIO object

Batch Processing

from media_toolkit import MediaList, AudioFile

# Process multiple files efficiently
audio_files = MediaList([
    "song1.wav",
    "https://example.com/song2.mp3",
    b"raw_audio_bytes..."
])

for audio in audio_files:
    audio.save(f"converted_{audio.file_name}.mp3")  # Auto-convert on save

πŸ–ΌοΈ Image Processing

OpenCV-powered image operations:

from media_toolkit import ImageFile
import cv2

# Load and process
img = ImageFile().from_any("image.png")
image_array = img.to_np_array()  # β†’ (H, W, C) uint8 array

# Apply transformations
flipped = cv2.flip(image_array, 0)

# Save processed image
ImageFile().from_np_array(flipped).save("flipped.jpg")

🎡 Audio Processing

FFmpeg/PyAV-powered audio operations:

from media_toolkit import AudioFile

# Load audio
audio = AudioFile().from_file("input.wav")

# Get numpy array for ML/analysis
audio_array = audio.to_np_array()  # β†’ (samples, channels) float32 in [-1, 1] range

# Inspect metadata
print(f"Sample rate: {audio.sample_rate} Hz; Channels: {audio.channels}; Duration: {audio.duration}")

# Format conversion (automatic re-encoding)
audio.save("output.mp3")   # MP3
audio.save("output.flac")  # FLAC (lossless)
audio.save("output.m4a")   # AAC

# Create audio from numpy
new_audio = AudioFile().from_np_array(
    audio_array,
    sample_rate=audio.sample_rate,
    audio_format="wav"
)

Supported formats: WAV, MP3, FLAC, AAC, M4A, OGG, Opus, WMA, AIFF

🎬 Video Processing

High-performance video operations:

from media_toolkit import VideoFile
import cv2

video = VideoFile().from_file("input.mp4")

# Extract audio track
audio = video.extract_audio("audio.mp3")

# Process frames
for i, frame in enumerate(video.to_stream()):
    if i >= 300:  # First 300 frames
        break
    # frame is numpy array (H, W, C)
    processed = my_processing_function(frame)
    cv2.imwrite(f"frame_{i:04d}.png", processed)

# Create video from images
images = [f"frame_{i:04d}.png" for i in range(300)]
modifiedVid = VideoFile().from_files(images, frame_rate=30, audio_file="audio.mp3")

🌐 Web & API Integration

Native FastTaskAPI Support

Built-in integration with FastTaskAPI for simplified file handling:

from fast_task_api import FastTaskAPI, ImageFile, VideoFile

app = FastTaskAPI()

@app.task_endpoint("/process")
def process_media(image: ImageFile, video: VideoFile) -> VideoFile:
    # Automatic type conversion, validation
    modified_video = my_ai_inference(image, video)
    # any media can be returned automatically
    return modified_video

FastAPI Integration

from fastapi import FastAPI, UploadFile, File
from media_toolkit import ImageFile

app = FastAPI()

@app.post("/process-image")
async def process_image(file: UploadFile = File(...)):
    image = ImageFile().from_any(file)

HTTP Client Usage

import httpx
from media_toolkit import ImageFile

image = ImageFile().from_file("photo.jpg")

# Send to API
files = {"file": image.to_httpx_send_able_tuple()}
response = httpx.post("https://api.example.com/upload", files=files)

πŸ“‹ Advanced Features

Container Classes

MediaList - Type-safe batch processing:

from media_toolkit import MediaList, ImageFile

images = MediaList[ImageFile]()
images.extend(["img1.jpg", "img2.png", "https://example.com/img3.jpg"])

# Lazy loading - files loaded on access
for img in images:
    img.save(f"processed_{img.file_name}")

MediaDict - Key-value media storage:

from media_toolkit import MediaDict, ImageFile

media_db = MediaDict()
media_db["profile"] = "profile.jpg"
media_db["banner"] = "https://example.com/banner.png"

# Export to JSON
json_data = media_db.to_json()

Streaming for Large Files

# Memory-efficient processing
audio = AudioFile().from_file("large_audio.wav")
for chunk in audio.to_stream():
    process_chunk(chunk)  # Process in chunks

video = VideoFile().from_file("large_video.mp4")
stream = video.to_stream()
for frame in stream:
    process_frame(frame)  # Frame-by-frame processing

# video-to-audio-stream
for av_frame in stream.audio_frames():
    pass

πŸš€ Performance

MediaToolkit leverages industry-standard libraries for maximum performance:

  • FFmpeg (PyAV): Professional-grade audio/video codec support
  • OpenCV: Optimized computer vision operations
  • Streaming: Memory-efficient processing of large files
  • Hardware acceleration: GPU support where available

Benchmarks:

  • Audio conversion: ~100x faster than librosa/pydub
  • Image processing: Near-native OpenCV speed
  • Video processing: Hardware-accelerated encoding/decoding. FPS > 300 for video decoding on consumer grade hardware.

πŸ”§ Key Features

βœ… Universal input: Files, URLs, bytes, base64, numpy arrays, bytesio, starlette upload files, soundfile
βœ… Automatic format detection: Smart content-type inference
βœ… Seamless conversion: Change formats on save
βœ… Type-safe: Full typing support with generics
βœ… Web-ready: Native FastTaskAPI integration, extra features for httpx and fastapi
βœ… Production-tested: Used in production AI/ML pipelines

🀝 Contributing

We welcome contributions! Key areas:

  • Performance optimizations
  • New format support
  • Documentation & examples
  • Test coverage
  • Platform-specific enhancements

πŸ“„ License

MIT License - see LICENSE for details.


Join the intelligence revolution. Join socaity.ai

About

Web-ready standardized file processing and serialization. Read, write, convert and send files. Including image, audio, video and any other file. Easily convert between numpy, base64, bytes and more.

Topics

Resources

License

Stars

Watchers

Forks

Sponsor this project

Packages

No packages published

Languages