Releases: SocketDev/socket-btm
Releases · SocketDev/socket-btm
Yoga Layout WASM v20251128-0d7c580
Yoga Layout v3.1.0 compiled to WASM for flexbox layout calculations.
Included Files
yoga-v20251128-0d7c580.wasm- Yoga Layout WASM binaryyoga-v20251128-0d7c580.mjs- ES Module JavaScript bindingsyoga-sync-v20251128-0d7c580.js- Synchronous JavaScript wrapperchecksums.txt- SHA256 checksums for verificationchecksums.txt.asc- GPG signature (if available)
Download URLs
https://github.com/SocketDev/socket-btm/releases/download/yoga-layout-v20251128-0d7c580/yoga-v20251128-0d7c580.wasm
https://github.com/SocketDev/socket-btm/releases/download/yoga-layout-v20251128-0d7c580/yoga-v20251128-0d7c580.mjs
https://github.com/SocketDev/socket-btm/releases/download/yoga-layout-v20251128-0d7c580/yoga-sync-v20251128-0d7c580.js
Verification
# Verify checksums
shasum -a 256 -c checksums.txt
# Verify GPG signature (if GPG key is available)
gpg --verify checksums.txt.asc checksums.txtUsage
// ES Module (async)
import Yoga from './yoga-v20251128-0d7c580.mjs';
// Synchronous wrapper
import Yoga from './yoga-sync-v20251128-0d7c580.js';Built from Yoga Layout v3.1.0
ONNX Runtime WASM v20251128-0d7c580
ONNX Runtime v1.20.1 compiled to WASM with SIMD and threading support.
Included Files
ort.wasm- Main WASM binary with SIMD + threadingort.mjs- ES module loaderchecksums.txt- SHA256 checksums for verification
Usage
import * as ort from './ort.mjs';Built from ONNX Runtime v1.20.1
node-smol-builder 20251128-0d7c580
Minimal Node.js v24.10.0 binaries for all platforms.
Platforms
- macOS: arm64, x64
- Linux (glibc): x64, arm64
- Linux (musl/Alpine): x64, arm64
- Windows: x64, arm64
Files
node-darwin-arm64- macOS Apple Siliconnode-darwin-x64- macOS Intelnode-linux-x64- Linux x64 (glibc)node-linux-arm64- Linux ARM64 (glibc)node-linux-x64-musl- Alpine Linux x64node-linux-arm64-musl- Alpine Linux ARM64node-win-x64.exe- Windows x64node-win-arm64.exe- Windows ARM64 (cross-compiled)checksums.txt- SHA256 checksums
Usage
Download the appropriate binary for your platform and run it:
./node-darwin-arm64 script.jsBuilt from Node.js v24.10.0
AI Models v20251128-0d7c580
Production AI models for Socket BTM, optimized with INT4 quantization.
Included Models
MiniLM-L6-v2
- Sentence embeddings model
- 384-dimensional embeddings
- INT4 quantized (~75% size reduction)
CodeT5
- Code understanding model
- INT4 quantized (~75% size reduction)
Files
models-v20251128-0d7c580.tar.gz- All production modelschecksums.txt- SHA256 checksums for all .onnx fileschecksums.txt.asc- GPG signature (if available)
Download URL
https://github.com/SocketDev/socket-btm/releases/download/models-v20251128-0d7c580/models-v20251128-0d7c580.tar.gz
Verification
# Extract and verify checksums
tar -xzf models-v20251128-0d7c580.tar.gz
shasum -a 256 -c checksums.txt
# Verify GPG signature (if GPG key is available)
gpg --verify checksums.txt.asc checksums.txtUsage
Extract the archive and load models with ONNX Runtime:
import * as ort from 'onnxruntime-node';
const session = await ort.InferenceSession.create('./minilm-l6/model.onnx');