Skip to content

Answer added to 1.5 Limits with Infinite Inputs (LT5) except 1.58 (b) #511

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 150 additions & 0 deletions source/calculus/source/01-LT/05.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,11 @@
</p>
</li>
</ol>
<answer>
<p>
D. As <m>x</m> gets smaller, the function <m>x^3</m> gets smaller and smaller.
</p>
</answer>
</activity>

<remark>
Expand Down Expand Up @@ -125,6 +130,11 @@
</p>
</li>
</ol>
<answer>
<p>
B. As <m>x</m> tends to <m>-\infty</m>, the function <m>1/x^3</m> tends to 0.
</p>
</answer>
</activity>

<definition>
Expand Down Expand Up @@ -255,6 +265,11 @@
</figure>
</sidebyside>
</introduction>
<answer>
<p>
C, D and E
</p>
</answer>
</activity>

<activity xml:id="infinity-rational1">
Expand Down Expand Up @@ -290,6 +305,11 @@
</p>
</li>
</ol>
<answer>
<p>
D. The only possible limits are any constant number or <m>\pm \infty</m>..
</p>
</answer>
</activity>

<activity xml:id="infinity-rational2">
Expand Down Expand Up @@ -335,6 +355,12 @@
</p>
</li>
</ol>
<answer>
<p> A. <m> \frac{1}{2} </m> </p>

<p> D. <m> 2 </m> </p>
<p> E. <m> -4 </m> </p>
</answer>
</task>


Expand Down Expand Up @@ -385,6 +411,11 @@
</p>
</li>
</ol>
<answer>
<p>
C. When the degree of the numerator is less than the degree of the denominator.
</p>
</answer>
</task>


Expand Down Expand Up @@ -419,6 +450,11 @@
</p>
</li>
</ol>
<answer>
<p>
B. When the degree of the numerator is greater than the degree of the denominator.
</p>
</answer>
</task>


Expand All @@ -428,6 +464,15 @@
Test your rules by creating a rational function whose limit as <m>x \to \infty</m> equals 0 and another whose limit as <m>x \to \infty</m> is infinite.
Then check them graphically.
</p>
<answer>

<p>
<m>\displaystyle \lim_{x\to \infty} \dfrac{x^2-x+3}{ 2x^3-3x+5} = 0 </m>
</p>
<p>
<m>\displaystyle \lim_{x\to \infty} \dfrac{2x^3-3x^2+5}{ 5x^2-x+1} </m> is infinite.
</p>
</answer>
</task>
</activity>

Expand All @@ -445,6 +490,17 @@
\lim_{x\to-\infty } -\dfrac{6 \, {x^4} + 7 \, {x^3} - 7}{6 \, x - {x^4} + 9} \,\text{ and }\, \lim_{x\to+\infty } -\dfrac{6 \, {x^4} + 7 \, {x^3} - 7}{6 \, x - {x^4} + 9}
</me>
</p>
<answer>



<p>
<me>
\lim_{x\to-\infty } -\dfrac{6 \, {x^4} + 7 \, {x^3} - 7}{6 \, x - {x^4} + 9} = 6 \,\text{ and }\, \lim_{x\to+\infty } -\dfrac{6 \, {x^4} + 7 \, {x^3} - 7}{6 \, x - {x^4} + 9} = 6
</me>
</p>

</answer>
</task>


Expand All @@ -454,6 +510,13 @@
\lim_{x\to-\infty } -\dfrac{7 \, {x^4} - 5 \, {x^3} + 8}{3 \, {\left(2 \, {x^5} + 3 \, {x^2} - 3\right)}} \,\text{ and }\, \lim_{x\to+\infty } -\dfrac{7 \, {x^4} - 5 \, {x^3} + 8}{3 \, {\left(2 \, {x^5} + 3 \, {x^2} - 3\right)}}
</me>
</p>
<answer>
<p>
<me>
\lim_{x\to-\infty } -\dfrac{7 \, {x^4} - 5 \, {x^3} + 8}{3 \, {\left(2 \, {x^5} + 3 \, {x^2} - 3\right)}} = 0 \,\text{ and }\, \lim_{x\to+\infty } -\dfrac{7 \, {x^4} - 5 \, {x^3} + 8}{3 \, {\left(2 \, {x^5} + 3 \, {x^2} - 3\right)}} = 0
</me>
</p>
</answer>
</task>


Expand All @@ -463,6 +526,13 @@
\lim_{x\to-\infty } \dfrac{3 \, {x^6} + {x^3} - 8}{7 \, x - 6 \, {x^5} + 7} \,\text{ and }\, \lim_{x\to+\infty } \dfrac{3 \, {x^6} + {x^3} - 8}{7 \, x - 6 \, {x^5} + 7}
</me>
</p>
<answer>
<p>
<me>
\lim_{x\to-\infty } \dfrac{3 \, {x^6} + {x^3} - 8}{7 \, x - 6 \, {x^5} + 7} = +\infty \,\text{ and }\, \lim_{x\to+\infty } \dfrac{3 \, {x^6} + {x^3} - 8}{7 \, x - 6 \, {x^5} + 7} = -\infty
</me>
</p>
</answer>
</task>
<!--
<answer>
Expand Down Expand Up @@ -545,6 +615,11 @@
</p>
</li>
</ol>
<answer>
<p>
E. The limit does not exist.
</p>
</answer>
</activity>

<warning>
Expand All @@ -565,41 +640,71 @@
<p>
<m>\displaystyle \lim_{x\to -\infty} \dfrac{x^3-x+83}{1} </m>
</p>
<answer>
<p>
<m>-\infty</m>
</p>
</answer>
</task>


<task>
<p>
<m>\displaystyle \lim_{x\to -\infty} \dfrac{1}{x^3-x+83} </m>
</p>
<answer>
<p>
0
</p>
</answer>
</task>


<task>
<p>
<m>\displaystyle \lim_{x\to +\infty} \dfrac{x+3}{2-x}</m>
</p>
<answer>
<p>
-1
</p>
</answer>
</task>


<task>
<p>
<m>\displaystyle \lim_{x\to -\infty} \dfrac{\pi-3x}{\pi x-3}</m>
</p>
<answer>
<p>
<m>\frac{-3}{\pi}</m>
</p>
</answer>
</task>


<task>
<p>
(Challenge) <m>\displaystyle \lim_{x\to + \infty} \dfrac{3e^x+2}{2e^x+3}</m>
</p>
<answer>
<p>
<m>\frac{3}{2}</m>
</p>
</answer>
</task>


<task>
<p>
(Challenge) <m>\displaystyle \lim_{x\to - \infty} \dfrac{3e^x+2}{2e^x+3}</m>
</p>
<answer>
<p>
<m>\frac{2}{3}</m>
</p>
</answer>
</task>
</activity>

Expand Down Expand Up @@ -633,6 +738,11 @@
Then, prove that your guess is right using algebra.
</p>
</statement>
<answer>
<p>
<m> f(x)= 2</m>
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should this be y = 2?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
<m> f(x)= 2</m>
<m> y= 2</m>

</p>
</answer>
</task>


Expand All @@ -642,6 +752,11 @@
Use limit notation to describe the behavior of <m>f(x)</m> at its horizontal asymptotes.
</p>
</statement>
<answer>
<p>
<m> \displaystyle \lim_{x \rightarrow \infty }f(x)= 2</m>
</p>
</answer>
</task>
<!--
<task>
Expand All @@ -660,6 +775,11 @@
Come up with the formula of a rational function that has horizontal asymptote <m>y=3</m>.
</p>
</statement>
<answer>
<p>
<m> \displaystyle \lim_{x \rightarrow \infty }\frac{3x^2 -x +1 }{x^2+2 }</m>
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think either we need to say "here is one possible answer" or leave no answer here, since the prompt is to construct a function.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
<m> \displaystyle \lim_{x \rightarrow \infty }\frac{3x^2 -x +1 }{x^2+2 }</m>
One possible answer: <m> \displaystyle \lim_{x \rightarrow \infty }\frac{3x^2 -x +1 }{x^2+2 }</m>

</p>
</answer>
</task>


Expand All @@ -669,6 +789,11 @@
What do you think is happening around <m>x=3</m>? We will come back to this in the next section!
</p>
</statement>
<answer>
<p>
Around <m>x= 3 </m>, <m>f(x)</m> is either going toward <m>- \infty </m> or <m> \infty </m>
</p>
</answer>
</task>
</activity>
<!-- application activity -->
Expand Down Expand Up @@ -702,6 +827,11 @@
In the long run, what temperature do you expect the coffee to tend to? Write your observation with limit notation.
</p>
</statement>
<answer>
<p>
<m> \lim_{ t \rightarrow \infty}Q(t) = 72 </m> degrees Fahrenheit, where <m>Q(t)</m> is the temperature of coffee at anytime <m>t</m>.
</p>
</answer>
</task>


Expand All @@ -712,6 +842,11 @@
Which one?
</p>
</statement>
<answer>
<p>
<m>c = 72 </m>
</p>
</answer>
</task>


Expand All @@ -723,6 +858,11 @@
Use this to find the value of <m>b</m> for the exponential model described in this scenario.
</p>
</statement>
<answer>
<p>
<m>b = 0.9 </m>
</p>
</answer>
</task>


Expand All @@ -733,6 +873,11 @@
Use the data about the initial temperature to find the value of the parameter <m>a</m> in the model <m> Q(t) = a \, b^t + c</m>.
</p>
</statement>
<answer>
<p>
<m> Q(t) = 100 (0.9)^t + 72 </m>.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This should be 28(0.9)^t + 72

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
<m> Q(t) = 100 (0.9)^t + 72 </m>.
<m> Q(t) = 28(0.9)^t + 72 </m>.

</p>
</answer>
</task>


Expand All @@ -743,6 +888,11 @@
If you go back to drink the cup of coffee 30 minutes after it was left on the counter, what temperature will the coffee have reached?
</p>
</statement>
<answer>
<p>
<m> Q(30) = 76.23 </m>.
</p>
</answer>
</task>
</activity>
</subsection>
Expand Down
Loading