Skip to content

establish independence as "solutions are unique" #621

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 1 commit into
base: main
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
286 changes: 176 additions & 110 deletions source/linear-algebra/source/02-EV/04.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -150,134 +150,203 @@
<activity estimated-time='10'>
<introduction>
<p>Consider the following three vectors in <m>\IR^3</m>:
<me>\vec v_1=\left[\begin{array}{c}-2 \\ 0 \\ 0\end{array}\right],
<me>\vec v_1=\left[\begin{array}{c}-2 \\ 0 \\ 3\end{array}\right],
\vec v_2=\left[\begin{array}{c}1 \\ 3 \\ 0\end{array}\right],
\text{ and }
\vec v_3=\left[\begin{array}{c}-2 \\ 5 \\ 4\end{array}\right]
\vec v_3=\left[\begin{array}{c}-2 \\ 6 \\ 6\end{array}\right]
</me>.
</p>
</introduction>
<task>
<p>
Let <m> \vec w = 3\vec v_1 - \vec v_2 - 5 \vec v_3 = \left[\begin{array}{c}\unknown \\ \unknown \\ \unknown\end{array}\right]</m>.
The set <m>\{\vec v_1,\vec v_2,\vec v_3,\vec w\}</m> is...
<ol marker="A.">
<li><p>linearly dependent: at least one vector is a linear combination of others</p></li>
<li><p>linearly independent: no vector is a linear combination of others</p></li>
</ol>
</p>
<statement>
<p>
Let <m> \vec v_4 = 3\vec v_1 - \vec v_2 - 2 \vec v_3 =
\left[\begin{array}{c}-3 \\ -15 \\ -3\end{array}\right]</m>.
The set <m>\{\vec v_1,\vec v_2,\vec v_3,\vec v_4\}</m> is...
<ol marker="A.">
<li><p>linearly dependent: at least one vector is a linear combination of others</p></li>
<li><p>linearly independent: no vector is a linear combination of others</p></li>
</ol>
</p>
</statement>
<answer>
<p>
A. We explicitly constructed <m>\vec v_4</m> as a linear combination of the others.
(It turns out <m>\vec v_3</m> is a linear combo as well.)
</p>
</answer>
</task>
<task>
<p>
Find <me>\RREF \left[\begin{array}{ccc|c}
\vec v_1 &amp; \vec v_2 &amp; \vec v_3 &amp; \vec w \\
\end{array}\right]=
\RREF \left[\begin{array}{ccc|c}
-2 &amp; 1 &amp;-2 &amp; \unknown \\
0 &amp; 3 &amp; 5 &amp; \unknown \\
0 &amp;0 &amp;4 &amp; \unknown
\end{array}\right]= \unknown .</me>
</p>
<p>
What does this tell you about solution set for the vector equation
<m>x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3 =\vec w</m>?
<ol marker="A.">
<li>
<p>
It is inconsistent.
</p>
</li>
<li>
<p>
It is consistent with one solution.
</p>
</li>
<li>
<p>
It is consistent with infinitely many solutions.
</p>
</li>
</ol>
</p>
</task>
<statement>
<p>
Find <me>\RREF \left[\begin{array}{ccc|c}
\vec v_1 &amp; \vec v_2 &amp; \vec v_3 &amp; \vec v_4 \\
\end{array}\right]=
\RREF \left[\begin{array}{ccc|c}
-2 &amp; 1 &amp;-2 &amp; -3 \\
0 &amp; 3 &amp; 6 &amp; -15 \\
3 &amp;0 &amp;6 &amp; -3
\end{array}\right]= \unknown .</me>
</p>
<p>
What does this guarantee about the solution set for the vector equation
<m>x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3 =\vec v_4</m>?
<ol marker="A.">
<li>
<p>
It is inconsistent.
</p>
</li>
<li>
<p>
It is consistent with one solution.
</p>
</li>
<li>
<p>
It is consistent with infinitely many solutions.
</p>
</li>
<li>
<p>
None of these.
</p>
</li>
</ol>
</p>
</statement>
<answer>
<p>
C. Since <me>
\RREF \left[\begin{array}{ccc|c}
-2 &amp; 1 &amp;-2 &amp; -3 \\
0 &amp; 3 &amp; 6 &amp; -15 \\
3 &amp;0 &amp;6 &amp; -3
\end{array}\right] =
\RREF \left[\begin{array}{ccc|c}
1 &amp; 0 &amp;2 &amp; -1 \\
0 &amp; 1 &amp; 2 &amp; -5 \\
0 &amp;0 &amp;0 &amp; 0
\end{array}\right]</me>
has no contradiction and a free variable, it has infinitely-many solutions.
</p>
</answer>
</task>
<task>
<p>
Find <me>\RREF \left[\begin{array}{cccc|c}
\vec v_1 &amp; \vec v_2 &amp; \vec v_3 &amp; \vec w &amp; \vec 0\\
\end{array}\right]=
\RREF \left[\begin{array}{cccc|c}
-2 &amp; 1 &amp;-2 &amp; \unknown &amp; 0\\
0 &amp; 3 &amp; 5 &amp; \unknown &amp; 0 \\
0 &amp;0 &amp;4 &amp; \unknown &amp; 0
\end{array}\right]= \unknown .</me>
</p>
<p>
What does this tell you about solution set for the vector equation
<m>x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3 + x_4\vec w=\vec{0}</m>?
<ol marker="A.">
<li>
<p>
It is inconsistent.
</p>
</li>
<li>
<p>
It is consistent with one solution.
</p>
</li>
<li>
<p>
It is consistent with infinitely many solutions.
</p>
</li>
</ol>
</p>
</task>
<task>
<statement>
<p>
Which of the following is the best conclusion obtained when we solved
<m>x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3 + x_4\vec w=\vec{0}</m>?
Let <m>\vec w=\left[\begin{array}{c}\unknown \\ \unknown \\ \unknown\end{array}\right]</m>
be some arbitrary vector in <m>\mathbb R^3</m>.
Consider <me>\RREF \left[\begin{array}{cccc}
\vec v_1 &amp; \vec v_2 &amp; \vec v_3 &amp; \vec v_4 \\
\end{array}\right]=
\RREF \left[\begin{array}{cccc}
-2 &amp; 1 &amp;-2 &amp; -3 \\
0 &amp; 3 &amp; 6 &amp; -15 \\
3 &amp;0 &amp;6 &amp; -3
\end{array}\right]= \unknown .</me>
</p>
<p>
What does this guarantee about the solution set for the vector equation
<m>x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3 + x_4\vec v_4=\vec w</m>?
<ol marker="A.">
<li>
<p>
A pivot column in the <em>augmented</em> matrix <m>\RREF \left[\begin{array}{cccc|c}
\vec v_1 &amp; \vec v_2 &amp; \vec v_3 &amp; \vec w &amp; \vec 0 \\
\end{array}\right]</m> guarantees the linear independence
of <m>\{\vec v_1,\vec v_2,\vec v_3,\vec w\}</m>
by preventing contradictions.
It is inconsistent.
</p>
</li>
<li>
<p>
A pivot column in the <em>coefficient</em> matrix <m>\RREF \left[\begin{array}{cccc}
\vec v_1 &amp; \vec v_2 &amp; \vec v_3 &amp; \vec w \\
\end{array}\right]</m> guarantees the linear independence
of <m>\{\vec v_1,\vec v_2,\vec v_3,\vec w\}</m>
by preventing contradictions.
It is consistent with exactly one solution.
</p>
</li>
<li>
<p>
A non-pivot column in the <em>augmented</em> matrix <m>\RREF \left[\begin{array}{cccc|c}
\vec v_1 &amp; \vec v_2 &amp; \vec v_3 &amp; \vec w &amp; \vec 0 \\
\end{array}\right]</m> guarantees the linear dependence
of <m>\{\vec v_1,\vec v_2,\vec v_3,\vec w\}</m>
by describing a linear combination of one vector in terms of the others.
It is not consistent with exactly one solution.
</p>
</li>
<li>
<p>
A non-pivot column in the <em>coefficient</em> matrix <m>\RREF \left[\begin{array}{cccc}
\vec v_1 &amp; \vec v_2 &amp; \vec v_3 &amp; \vec w \\
\end{array}\right]</m> guarantees the linear dependence
of <m>\{\vec v_1,\vec v_2,\vec v_3,\vec w\}</m>
by describing a linear combination of one vector in terms of the others.
It is consistent with infinitely many solutions.
</p>
</li>
</ol>
</p>
</task>
</activity>
</statement>
<answer>
<p>
D. Due to the row of zeros, it might be inconsistent. But if it is consistent,
the free variable column guarantees it will have infinitely-many solutions.
</p>
</answer>
</task>
<task>
<statement>
<p>
Which of the following describes any solution to the equation
<m>x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3 + x_4\vec v_4=\vec{w}</m>
for any <em>linearly dependent</em> set <m>\{\vec v_1,\vec v_2,\vec v_3,\vec v_4\}</m>
and some vector <m>\vec w\in \mathbb R^n</m>?
<ol marker="A.">
<li>
<p>
No such solution can exist.
</p>
</li>
<li>
<p>
It cannot be unique.
</p>
</li>
<li>
<p>
It must be unique.
</p>
</li>
</ol>
</p>
</statement>
<answer>
<p>
B. If we assume the solution exists, the previous answer shows us that it cannot be the only one,
due to the free variable column.
</p>
</answer>
</task>
<task>
<statement>
<p>
Which of the following describes any solution to the equation
<m>x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3 + x_4\vec v_4=\vec{w}</m>
for any <em>linearly independent</em> set <m>\{\vec v_1,\vec v_2,\vec v_3,\vec v_4\}</m>
and some vector <m>\vec w\in \mathbb R^n</m>?
<ol marker="A.">
<li>
<p>
No such solution can exist.
</p>
</li>
<li>
<p>
It cannot be unique.
</p>
</li>
<li>
<p>
It must be unique.
</p>
</li>
</ol>
</p>
</statement>
<answer>
<p>
C. If we assume the solution exists, it must be the only one,
due to the lack of a free variable column.
</p>
</answer>
</task>
</activity>
<sage language="octave">
</sage>

Expand All @@ -286,18 +355,15 @@ by describing a linear combination of one vector in terms of the others.
<p>
For any vector space,
the set <m>\{\vec v_1,\dots\vec v_n\}</m> is linearly dependent if and only
if the vector equation <m>x_1\vec v_1+ x_2 \vec v_2+\dots+x_n\vec v_n=\vec{0}</m> is consistent with
infinitely many solutions.
if the vector equation <m>x_1\vec v_1+ x_2 \vec v_2+\dots+x_n\vec v_n=\vec w</m> cannot have
a unique solution for any <m>\vec w</m>.
</p>
<p>
Likewise, the set of vectors
On the other hand, the set of vectors
<m>\{\vec v_1,\dots\vec v_n\}</m> is linearly independent
if and only the vector equation <me>x_1\vec v_1+ x_2 \vec v_2 + \cdots + x_n\vec v_n = \vec{0}</me>
has exactly one solution: <m>\left[\begin{array}{c}
x_1 \\ \vdots \\ x_n
\end{array}\right]=\left[\begin{array}{c}
0 \\ \vdots \\ 0
\end{array}\right]</m>.
if and only if any solution to the vector equation
<me>x_1\vec v_1+ x_2 \vec v_2 + \cdots + x_n\vec v_n = \vec w</me>
must be unique for any <m>\vec w</m>.
</p>
</statement>
</fact>
Expand All @@ -322,8 +388,8 @@ by describing a linear combination of one vector in terms of the others.
\left[\begin{array}{c}4\\3\\0\\1\end{array}\right]
\right\}
</me>
is linearly dependent (the part that shows its linear system has
infinitely many solutions).
is linearly dependent (the part that shows its linear system cannot have
a unique solution).
</p>
</statement>
</activity>
Expand Down