Skip to content

AT3 Incorporate Vector Equations #657

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
254 changes: 193 additions & 61 deletions source/linear-algebra/source/03-AT/03.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -50,8 +50,11 @@ Let <m>T: \IR^2 \rightarrow \IR^3</m> be given by
\text{with standard matrix }
\left[\begin{array}{cc} 1 &amp; 0 \\ 0 &amp; 1 \\ 0 &amp; 0 \end{array}\right]
</me>
Which of these subspaces of <m>\IR^2</m> describes
the set of all vectors that transform into <m>\vec 0</m>?
Which of these sets contain all vectors <m>\left[\begin{array}{c}x \\ y \end{array}\right]</m>
that transform into <m>T\left(\left[\begin{array}{c}x \\ y \end{array}\right] \right)
=
\left[\begin{array}{c} x \\ y \\ 0 \end{array}\right]=
\left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right]</m>?
</p>
<ol marker="A." cols="2">
<li>
Expand Down Expand Up @@ -82,12 +85,12 @@ the set of all vectors that transform into <m>\vec 0</m>?
<definition xml:id="AT3-definition-kernel">
<statement>
<p>
Let <m>T: V \rightarrow W</m> be a linear transformation, and let <m>\vec{z}</m> be the additive
identity (the <q>zero vector</q>) of <m>W</m>. The <term>kernel</term><idx>kernel</idx> of <m>T</m>
Let <m>T: V \rightarrow W</m> be a linear transformation, and let <m>\vec{0}</m> be the zero vector of <m>W</m>.
The <term>kernel</term><idx>kernel</idx> of <m>T</m>
(also known as the <term>null space</term><idx>null space</idx> of <m>T</m>)
is an important subspace of <m>V</m> defined by
is an important subset of <m>V</m> defined by
<me>
\ker T = \left\{ \vec{v} \in V\ \big|\ T(\vec{v})=\vec{z}\right\}
\ker T = \left\{ \vec{x} \in V\ \big|\ T(\vec{x})=\vec{0}\right\}
</me>
</p>
<figure>
Expand Down Expand Up @@ -128,8 +131,13 @@ Let <m>T: \IR^3 \rightarrow \IR^2</m> be given by
\text{with standard matrix }
\left[\begin{array}{ccc} 1 &amp; 0 &amp; 0 \\ 0 &amp; 1 &amp; 0 \end{array}\right]
</me>
Which of these subspaces of <m>\IR^3</m> describes <m>\ker T</m>,
the set of all vectors that transform into <m>\vec 0</m>?
Which of these subsets of <m>\IR^3</m> is equal to
<m>\ker T=\left\{ \vec{x} \in \mathbb R^3\ \big|\ T(\vec{x})=\vec{0}\right\}</m>,
the set of all vectors <m>\left[\begin{array}{c}x \\ y \\ z\end{array}\right]</m>
that transform into <m>T\left(\left[\begin{array}{c}x \\ y \\ z \end{array}\right] \right)
=
\left[\begin{array}{c} x \\ y\end{array}\right]=
\left[\begin{array}{c} 0 \\ 0 \end{array}\right]</m>?
</p>
<ol marker='A.' cols="2">
<li>
Expand Down Expand Up @@ -161,28 +169,101 @@ the set of all vectors that transform into <m>\vec 0</m>?
<p>
Let <m>T: \IR^3 \rightarrow \IR^2</m> be the linear transformation given by the
standard matrix
<me>T\left( \left[\begin{array}{c} x \\ y \\ z \end{array}\right]\right) = \left[\begin{array}{c} 3x+4y-z \\ x+2y+z \end{array}\right]</me>
<me>
A=\left[\begin{array}{ccc} 3 &amp; 4 &amp; -1 \\ 1 &amp; 2 &amp; 1 \end{array}\right]
=\left[\begin{array}{ccc} T(\vec e_1) &amp; T(\vec e_2) &amp; T(\vec e_3)\end{array}\right].
</me>

</p>
</introduction>
<task>
<task>
<statement>
<p>
Which of these is the most appropriate method to determine whether a <m>\mathbb R^3</m> vector
<m>\vec{x}=\left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right]=x_1\vec{e}_1+x_2\vec{e}_2+x_3\vec{e}_3</m>,
belongs to <m>\ker T=\left\{ \vec{x} \in \mathbb R^3\ \big|\ T(\vec{x})=\vec{0}\right\}</m>?
<ol marker="A.">
<li>
<p>
Determine if the set of vectors
<m>\left\{T(\vec e_1), T(\vec e_2), T(\vec e_3), T(\vec x)\right\}</m>
spans <m>\IR^3</m>.
</p>
</li>
<li>
<p>
Determine if the set of vectors
<m>\left\{T(\vec e_1), T(\vec e_2), T(\vec e_3), T(\vec x)\right\}</m>
is linearly dependent.
</p>
</li>
<li>
<p>
Determine if
<m>\vec x=\left[\begin{array}{c} x_1 \\ x_2\\ x_3\end{array}\right]</m>
belongs to the solution set of the vector equation
<me>T(\vec x)=T\left(\left[\begin{array}{c} x_1 \\ x_2\\ x_3\end{array}\right]\right)=
x_1T(\vec e_1)+x_2T(\vec e_2)+x_3T(\vec e_3)=
\left[\begin{array}{c} 0 \\ 0\end{array}\right]</me>.
</p>
</li>
<li>
<p>
Determine if the equation
<me>T(\vec 0)=T\left(\left[\begin{array}{c} 0 \\ 0\\ 0\end{array}\right]\right)=
0T(\vec e_1)+0T(\vec e_2)+0T(\vec e_3)=
T(\vec x)</me> is consistent.
</p>
</li>
</ol>
</p>
</statement>
<answer>
<p>
B. This is exactly the same as finding the solution space for the
homoegeneous vector equation <m>T(\vec x)=\vec 0</m>.
</p>
</answer>
</task>
<task>
<statement>
<p>
Use this method to find the kernel of <m>T</m>.
</p>
<answer>
<p>
<m>\ker T=\left\{\left[\begin{array}{c}3a\\-2a\\a\end{array}\right]\middle|
a\in\IR\right\}</m>
</p>
</answer>
</statement>
</task>
</activity>
<sage language="octave">
</sage>

<observation xml:id="observation-kernel-homogeneous-solution">
<statement>
<p>
Set
<m>
T\left(\left[\begin{array}{c}x\\y\\z\end{array}\right]\right)
=
\left[\begin{array}{c}0\\0\end{array}\right]
</m> to find a linear system of equations whose solution set is the kernel.
The kernel of a transformation <m>T</m>
is exactly the solution space of
the homogeneous equation <m>T(\vec{x})=\vec{0}</m>.
If its standard matrix is <m>A</m>, then we may write
<m>A\vec x=\vec 0</m> and use <m>\RREF[A\,|\,\vec 0]</m> to
find this kernel.
</p>
</task>
<task>
<p>
Use <m>\RREF(A)</m> to solve this homogeneous system of equations and find a basis
for the kernel of <m>T</m>.
In particular, the kernel is a subspace of the transformation's
domain, and has a basis which may be found as in
<xref ref="fact-solution-space-basis"/>:
<me>
\ker T=\left\{\left[\begin{array}{c}3a\\-2a\\a\end{array}\right]\middle|
a\in\IR\right\} \hspace{2em}
\text{Basis for }\ker T=\left\{\left[\begin{array}{c}3\\-2\\1\end{array}\right]\right\}.
</me>
</p>
</task>
</activity>
<sage language="octave">
</sage>
</statement>
</observation>

<activity estimated-time='10'>
<statement>
Expand Down Expand Up @@ -245,9 +326,9 @@ Which of these subspaces of <m>\IR^3</m> describes the set of all vectors that a
<p>
Let <m>T: V \rightarrow W</m> be a linear transformation.
The <term>image</term><idx>image</idx> of <m>T</m>
is an important subspace of <m>W</m> defined by
is an important subset of <m>W</m> defined by
<me>
\Im T = \left\{ \vec{w} \in W\ \big|\ \text{there is some }\vec v\in V \text{ with } T(\vec{v})=\vec{w}\right\}
\Im T = \left\{ T(\vec v) \in W\ \big| \vec v\in V \right\}
</me>
</p>
<p>
Expand Down Expand Up @@ -323,7 +404,7 @@ Let <m>T: \IR^3 \rightarrow \IR^2</m> be given by
\text{with standard matrix }
\left[\begin{array}{ccc} 1 &amp; 0 &amp; 0 \\ 0 &amp; 1 &amp; 0 \end{array}\right]
</me>
Which of these subspaces of <m>\IR^2</m> describes <m>\Im T</m>,
Which of these subsets of <m>\IR^2</m> describes <m>\Im T = \left\{ T(\vec v) \in \IR^2\ \big| \vec v\in \IR^3 \right\}</m>,
the set of all vectors that are the result of using <m>T</m> to transform
<m>\IR^3</m> vectors?
</p>
Expand Down Expand Up @@ -366,9 +447,30 @@ the set of all vectors that are the result of using <m>T</m> to transform
</p>
<p>
Consider the question: Which vectors <m>\vec{w}</m> in <m>\IR^3</m> belong to
<m>\Im T</m>?
<m>\Im T=\left\{ T(\vec v) \in \IR^3\ \big| \vec v\in \IR^4 \right\}</m>?
</p>
</introduction>
<task>
<statement>
<p>
Recall that
<me>
T\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right] \right) =
x_1T(\vec e_1)+x_2T(\vec e_2)+x_3T(\vec e_3)+x_4T(\vec e_4)
</me>.
Complete the following vector equation which must be consistent
in order for <m>\left[\begin{array}{c} 12 \\ 3 \\ 3 \end{array}\right]</m>
to belong to <m>\Im T</m>:
<me>
x_1 \left[\begin{array}{c}\unknown\\\unknown\\\unknown\end{array}\right]+
x_2 \left[\begin{array}{c}\unknown\\\unknown\\\unknown\end{array}\right]+
x_3\left[\begin{array}{c}\unknown\\\unknown\\\unknown\end{array}\right]+
x_4\left[\begin{array}{c}\unknown\\\unknown\\\unknown\end{array}\right]=
\left[\begin{array}{c} 12 \\ 3 \\ 3 \end{array}\right]
</me>
</p>
</statement>
</task>
<task>
<statement>
<p>
Expand All @@ -377,6 +479,15 @@ the set of all vectors that are the result of using <m>T</m> to transform
</p>
</statement>
</task>
<task>
<statement>
<p>
Write down the vector equation which must be consistent in
order for <m>\left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right]</m>
to belong to <m>\Im T</m>.
</p>
</statement>
</task>
<task>
<statement>
<p>
Expand All @@ -390,90 +501,111 @@ the set of all vectors that are the result of using <m>T</m> to transform
<p>
An arbitrary vector <m>\left[\begin{array}{c}\unknown\\\unknown\\\unknown\end{array}\right]</m> belongs to
<m>\Im T</m> provided the equation
<me>x_1 T(\vec{e}_1)+x_2 T(\vec{e}_2)+x_3T(\vec{e}_3)+x_4T(\vec{e}_4)=\vec{w}</me> has...
<me>x_1 T(\vec{e}_1)+x_2 T(\vec{e}_2)+x_3T(\vec{e}_3)+x_4T(\vec{e}_4)=
\left[\begin{array}{c}\unknown\\\unknown\\\unknown\end{array}\right]</me> has...
<ol marker="A.">
<li>no solutions.</li>
<li>at most one solution.</li>
<li>exactly one solution.</li>
<li>at least one solution.</li>
<li>infinitely-many solutions.</li>
</ol>
</p>
</statement>
</task>
<task>
<statement>
<p>
Based on this, how do <m>\Im T</m> and <m>\vspan\left\{T(\vec{e}_1),T(\vec{e}_2),T(\vec{e}_3),T(\vec{e}_4)\right\}</m> relate to each other?
Based on this, what do we know?
<ol marker="A.">
<li>The set <m>\Im T</m> contains <m>\vspan\left\{T(\vec{e}_1),T(\vec{e}_2),T(\vec{e}_3),T(\vec{e}_4)\right\}</m> but is not equal to it.</li>
<li>The set <m>\vspan\left\{T(\vec{e}_1),T(\vec{e}_2),T(\vec{e}_3),T(\vec{e}_4)\right\}</m> contains <m>\Im T</m> but is not equal to it.</li>
<li>
The set <m>\left\{T(\vec{e}_1),T(\vec{e}_2),T(\vec{e}_3),T(\vec{e}_4)\right\}</m> spans
<m>\Im T</m> whenever
<m>\left\{T(\vec{e}_1),T(\vec{e}_2),T(\vec{e}_3),T(\vec{e}_4)\right\}</m>
is linearly independent.
</li>
<li>
The set <m>\Im T</m> equals the codomain whenever
<m>\left\{T(\vec{e}_1),T(\vec{e}_2),T(\vec{e}_3),T(\vec{e}_4)\right\}</m>
is linearly independent.
</li>
<li>
The set <m>\Im T</m> is simply <m>\{\vec 0\}</m> whenever
<m>\left\{T(\vec{e}_1),T(\vec{e}_2),T(\vec{e}_3),T(\vec{e}_4)\right\}</m>
is linearly dependent.
</li>
<li>The set <m>\Im T</m> and <m>\vspan\left\{T(\vec{e}_1),T(\vec{e}_2),T(\vec{e}_3),T(\vec{e}_4)\right\}</m> are equal to each other.</li>
<li>There is no relation between these two sets.</li>
</ol>
</p>
</statement>
</task>
</activity>

<observation>
<observation xml:id="AT3-columnspace-observation">
<p>
Let <m>T: \IR^4 \rightarrow \IR^3</m> be the linear transformation given by the
Let <m>T: \IR^n \rightarrow \IR^m</m> be the linear transformation given by the
standard matrix
<me>
A
=
\left[\begin{array}{cccc} 3 &amp; 4 &amp; 7 &amp; 1\\ -1 &amp; 1 &amp; 0 &amp; 2 \\ 2 &amp; 1 &amp; 3 &amp; -1 \end{array}\right]
\left[\begin{array}{ccc} T(\vec e_1) &amp; \cdots &amp; T(\vec e_n) \end{array}\right]
.</me>
</p>
<p>
Since the set
<m>
\setList{
\left[\begin{array}{c}3\\-1\\2\end{array}\right],
\left[\begin{array}{c}4\\1\\1\end{array}\right],
\left[\begin{array}{c}7\\0\\3\end{array}\right],
\left[\begin{array}{c}1\\2\\-1\end{array}\right]
Then we have
<me>
\Im T=\vspan\setList{
T(\vec e_1),
\cdots,
T(\vec e_n)
}
</m>
spans <m>\Im T</m>, we can obtain a basis for <m>\Im T</m> by finding
<m>
\RREF A
</me>
and in particular, see that <m>\Im T</m> is a subspace of the codomain, and thus
has a kernel which may be found as in <xref ref="observation-subspace-basis"/>:
given
<me>
\RREF \left[\begin{array}{cccc} 3 &amp; 4 &amp; 7 &amp; 1\\ -1 &amp; 1 &amp; 0 &amp; 2 \\ 2 &amp; 1 &amp; 3 &amp; -1 \end{array}\right]
=
\left[\begin{array}{cccc} 1 &amp; 0 &amp; 1 &amp; -1\\ 0 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; 0 &amp; 0 \end{array}\right]
</m>
and only using the vectors corresponding to pivot columns:
\left[\begin{array}{cccc} \markedPivot{1} &amp; 0 &amp; 1 &amp; -1\\ 0 &amp; \markedPivot{1} &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; 0 &amp; 0 \end{array}\right]
</me>
we see that we have
<me>
\Im T=\vspan\left\{
\left[\begin{array}{c} 3 \\ -1 \\ 2 \end{array}\right],
\left[\begin{array}{c} 4 \\ 1 \\ 1 \end{array}\right],
\left[\begin{array}{c} 7\\ 0 \\ 3 \end{array}\right],
\left[\begin{array}{c} 1\\ 2 \\ -1 \end{array}\right],
\right\}
</me> and <me>
\text{Basis for }\Im T=
\setList{
\left[\begin{array}{c}3\\-1\\2\end{array}\right],
\left[\begin{array}{c}4\\1\\1\end{array}\right]
}.
</me>
</p>
<p>
In general, the <term>column space</term><idx>column space</idx> of a matrix <m>M</m> refers to the subspace obtained by considering the span of its column vectors.
Using this terminology, if the transformation <m>T</m> is represented by the matrix <m>A</m>,
then the image of <m>T</m> is the <term>column space</term><idx>column space</idx> of <m>A</m>.
This justifies why the image of a transformation is also called the <term>column space</term><idx>column space</idx> of its standard matrix.
</p>

</observation>

<fact>
<statement>
<p>
Let <m>T:\IR^n\to\IR^m</m> be a linear transformation with standard matrix <m>A</m>.
To summarize,
let <m>T:\IR^n\to\IR^m</m> be a linear transformation with standard matrix <m>A</m>.
<ul>
<li>
<p>
The kernel of <m>T</m> is the solution set of the homogeneous system given
by the augmented matrix <m>\left[\begin{array}{c|c}A&amp;\vec 0\end{array}\right]</m>.
Use the coefficients of its free variables to get a basis for the kernel (as in <xref ref="fact-solution-space-basis"/>).
The kernel of <m>T</m> is the solution set of the equation <m>T(\vec{x})=\vec{0}</m> or, equivalently, the linear system given by the augmented matrix <m>\left[\begin{array}{c|c}A&amp;\vec 0\end{array}\right]</m>.
Use the coefficients of its free variables to get a basis for the kernel (as in <xref ref="fact-solution-space-basis"/>).
</p>
</li>
<li>
<p>
The image of <m>T</m> is the span of the columns of <m>A</m>. Remove
the vectors creating non-pivot columns in <m>\RREF A</m> to get a basis
for the image (as in <xref ref="observation-subspace-basis"/>).
The image of <m>T</m> is the span of the columns of its standard matrix <m>A</m>,
a.k.a. its column space.
Remove the vectors creating non-pivot columns in <m>\RREF A</m> to get a basis for the image (as in <xref ref="observation-subspace-basis"/>).
</p>
</li>
</ul>
Expand Down