Skip to content

Tencent-Hunyuan/HunyuanWorld-Mirror

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

19 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

ไธญๆ–‡้˜…่ฏป

HunyuanWorld-Mirror

HunyuanWorld-Mirror Teaser

HunyuanWorld-Mirror is a versatile feed-forward model for comprehensive 3D geometric prediction. It integrates diverse geometric priors (camera poses, calibrated intrinsics, depth maps) and simultaneously generates various 3D representations (point clouds, multi-view depths, camera parameters, surface normals, 3D Gaussians) in a single forward pass.

demo_en_20mb.mp4

๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ Updates

  • [Oct 22, 2025]: We release the inference code and model weights. Download.

Join our Wechat and Discord group to discuss and find help from us.

Wechat Group Xiaohongshu X Discord

โ˜ฏ๏ธ HunyuanWorld-Mirror Introduction

Architecture

HunyuanWorld-Mirror consists of two key components:

(1) Multi-Modal Prior Prompting: A mechanism that embeds diverse prior modalities, including calibrated intrinsics, camera pose, and depth, into the feed-forward model. Given any subset of the available priors, we utilize several lightweight encoding layers to convert each modality into structured tokens.

(2) Universal Geometric Prediction: A unified architecture capable of handling the full spectrum of 3D reconstruction tasks from camera and depth estimation to point map regression, surface normal estimation, and novel view synthesis.

๐Ÿ› ๏ธ Dependencies and Installation

We recommend using CUDA version 12.4 for the manual installation.

# 1. Clone the repository
git clone https://github.com/Tencent-Hunyuan/HunyuanWorld-Mirror
cd HunyuanWorld-Mirror

# 2. Create conda environment
conda create -n hunyuanworld-mirror python=3.10 cmake=3.14.0 -y
conda activate hunyuanworld-mirror

# 3. Install PyTorch and other dependencies using conda
# For CUDA 12.4
conda install pytorch=2.4.0 torchvision pytorch-cuda=12.4 nvidia/label/cuda-12.4.0::cuda-toolkit -c pytorch -c nvidia -y

# 4. Install pip dependencies
pip install -r requirements.txt

# 5. Install gsplat for 3D Gaussian Splatting rendering 
# For CUDA 12.4
pip install gsplat --index-url https://docs.gsplat.studio/whl/pt24cu124

๐ŸŽฎ Quick Start

We provide a Gradio demo for the HunyuanWorld-Mirror model for quick start.

HunyuanWorld-Mirror Gradio Demo

Online Demo

Try our online demo without installation: ๐Ÿค— Hugging Face Demo

Local Demo

# 1. Install requirements for gradio demo
pip install -r requirements_demo.txt
# 2. Launch gradio demo locally
python app.py

๐Ÿ“ฆ Download Pretrained Models

To download the HunyuanWorld-Mirror model, first install the huggingface-cli:

python -m pip install "huggingface_hub[cli]"

Then download the model using the following commands:

huggingface-cli download tencent/HunyuanWorld-Mirror --local-dir ./ckpts

Note: For inference, the model weights will be automatically downloaded from Hugging Face when running the inference scripts, so you can skip this manual download step if preferred.

๐Ÿš€ Inference with Images & Priors

Example Code Snippet

from pathlib import Path
import numpy as np
import torch
from src.models.models.worldmirror import WorldMirror
from src.utils.inference_utils import extract_load_and_preprocess_images

# --- Setup ---
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = WorldMirror.from_pretrained("tencent/HunyuanWorld-Mirror").to(device)

# --- Load Data ---
# Load a sequence of N images into a tensor
inputs = {}
inputs['img'] = extract_load_and_preprocess_images(
    Path("path/to/your/data"), # video or directory containing images 
    fps=1, # fps for extracing frames from video
    target_size=518
).to(device)  # [1,N,3,H,W], in [0,1]
# -- Load Priors (Optional) --
# Configure conditioning flags and prior paths
cond_flags = [0, 0, 0]  # [camera_pose, depth, intrinsics]
prior_data = {
    'camera_pose': None,      # Camera pose tensor [1, N, 4, 4]
    'depthmap': None,         # Depth map tensor [1, N, H, W]
    'camera_intrinsics': None # Camera intrinsics tensor [1, N, 3, 3]
}
for idx, (key, data) in enumerate(prior_data.items()):
    if data is not None:
        cond_flags[idx] = 1
        inputs[key] = data

# --- Inference ---
with torch.no_grad():
    predictions = model(views=inputs, cond_flags=cond_flags)
Click to view output format
# Geometry outputs
pts3d_preds, pts3d_conf = predictions["pts3d"][0], predictions["pts3d_conf"][0]       # 3D point cloud in world coordinate: [S, H, W, 3] and point confidence: [S, H, W]
depth_preds, depth_conf = predictions["depth"][0], predictions["depth_conf"][0]       # Z-depth in camera frame: [S, H, W, 1] and depth confidence: [S, H, W]
normal_preds, normal_conf = predictions["normals"][0], predictions["normals_conf"][0] # Surface normal in camera coordinate: [S, H, W, 3] and normal confidence: [S, H, W]

# Camera outputs
camera_poses = predictions["camera_poses"][0]  # Camera-to-world poses (OpenCV convention): [S, 4, 4]
camera_intrs = predictions["camera_intrs"][0]  # Camera intrinsic matrices: [S, 3, 3]
camera_params = predictions["camera_params"][0]   # Camera vector: [S, 9] (translation, quaternion rotation, fov_v, fov_u)

# 3D Gaussian Splatting outputs
splats = predictions["splats"]
means = splats["means"][0].reshape(-1, 3)      # Gaussian means: [N, 3]
opacities = splats["opacities"][0].reshape(-1) # Gaussian opacities: [N]
scales = splats["scales"][0].reshape(-1, 3)    # Gaussian scales: [N, 3]
quats = splats["quats"][0].reshape(-1, 4)      # Gaussian quaternions: [N, 4]
sh = splats["sh"][0].reshape(-1, 1, 3)         # Gaussian spherical harmonics: [N, 1, 3]

Where:

  • S is the number of input views
  • H, W are the height and width of input images
  • N is the number of 3D Gaussians

Inference with More Functions

For advanced usage, see infer.py which provides additional features:

  • Save predictions: point clouds, depth maps, normals, camera parameters, and 3D Gaussian Splatting
  • Visualize outputs: depth maps, surface normals, and 3D point clouds
  • Render novel views using 3D Gaussians
  • Export 3D Gaussian Splatting results and camera parameters to COLMAP format

๐ŸŽฏ Post 3DGS Optimization (Optional)

Install dependencies

cd submodules/gsplat/examples
# install example requirements
pip install -r requirements.txt
# install pycolmap2 by rmbrualla
git clone https://github.com/rmbrualla/pycolmap.git
cd pycolmap
# in pyproject.toml, rename name = "pycolmap" to name = "pycolmap2"
vim pyproject.toml
# rename folder pycolmap to pycolmap2
mv pycolmap/ pycolmap2/
python3 -m pip install -e .

Optimization

First, run infer.py with --save_colmap and --save_gs flags to generate COLMAP format initialization:

python infer.py --input_path /path/to/your/input --output_path /path/to/your/output --save_colmap --save_gs

The reconstruction result (camera parameters, 3D points, and 3D Gaussians) will be saved under /path/to/your/output, such as:

output/
โ”œโ”€โ”€ images/                 # Input images
โ”œโ”€โ”€ sparse/
โ”‚   โ””โ”€โ”€ 0/
โ”‚       โ”œโ”€โ”€ cameras.bin     # Camera intrinsics
โ”‚       โ”œโ”€โ”€ images.bin      # Camera poses
โ”‚       โ””โ”€โ”€ points3D.bin    # 3D points
โ””โ”€โ”€ gaussians.ply           # 3D Gaussian Splatting initialization

Then, run the optimization script:

python submodules/gsplat/examples/simple_trainer_worldmirror.py default --data_factor 1 --data_dir /path/to/your/inference_output --result_dir /path/to/your/gs_optimization_output

๐Ÿ”ฎ Performance

HunyuanWorld-Mirror achieves state-of-the-art performance across multiple 3D perception tasks, surpassing feed-forward 3D reconstruction methods. It demonstrates superior performance in point cloud reconstruction, camera pose estimation, surface normal prediction, novel view rendering and depth estimation. Incorporating 3D priors, such as camera poses, depth, or intrinsics, plays a crucial role in enhancing performance across these tasks. For point cloud reconstruction and novel view synthesis tasks, the performance is as follows:

Point cloud reconstruction

Method 7-Scenes NRGBD DTU
Acc. โฌ‡ Comp. โฌ‡ Acc. โฌ‡ Comp. โฌ‡ Acc. โฌ‡ Comp. โฌ‡
Fast3R 0.096 0.145 0.135 0.163 3.340 2.929
CUT3R 0.094 0.101 0.104 0.079 4.742 3.400
VGGT 0.046 0.057 0.051 0.066 1.338 1.896
ฯ€ยณ 0.048 0.072 0.026 0.028 1.198 1.849
HunyuanWorld-Mirror 0.043 0.049 0.041 0.045 1.017 1.780
+ Intrinsics 0.042 0.048 0.041 0.045 0.977 1.762
+ Depths 0.038 0.039 0.032 0.031 0.831 1.022
+ Camera Poses 0.023 0.036 0.029 0.032 0.990 1.847
+ All Priors 0.018 0.023 0.016 0.014 0.735 0.935

Novel view synthesis

Method Re10K DL3DV
PSNR โฌ† SSIM โฌ† LPIPS โฌ‡ PSNR โฌ† SSIM โฌ† LPIPS โฌ‡
FLARE 16.33 0.574 0.410 15.35 0.516 0.591
AnySplat 17.62 0.616 0.242 18.31 0.569 0.258
HunyuanWorld-Mirror 20.62 0.706 0.187 20.92 0.667 0.203
+ Intrinsics 22.03 0.765 0.165 22.08 0.723 0.175
+ Camera Poses 20.84 0.713 0.182 21.18 0.674 0.197
+ Intrinsics + Camera Poses 22.30 0.774 0.155 22.15 0.726 0.174

Boost of Geometric Priors

For the other tasks, refer to the technique report for detailed performance comparisons.

๐Ÿ“‘ Open-Source Plan

  • Inference Code
  • Model Checkpoints
  • Technical Report
  • Gradio Demo
  • Evaluation Code
  • Training Code

๐Ÿ”— BibTeX

If you find HunyuanWorld-Mirror useful for your research and applications, please cite using this BibTeX:

@article{liu2025worldmirror,
  title={WorldMirror: Universal 3D World Reconstruction with Any-Prior Prompting},
  author={Liu, Yifan and Min, Zhiyuan and Wang, Zhenwei and Wu, Junta and Wang, Tengfei and Yuan, Yixuan and Luo, Yawei and Guo, Chunchao},
  journal={arXiv preprint arXiv:2510.10726},
  year={2025}
}

๐Ÿ“ง Contact

Please send emails to [email protected] if there is any question.

Acknowledgements

We would like to thank HunyuanWorld. We also sincerely thank the authors and contributors of VGGT, Fast3R, CUT3R, and DUSt3R for their outstanding open-source work and pioneering research.

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •