Skip to content

Commit 88e5e26

Browse files
committed
convert PurePowerTest tests into unit tests etc.
1 parent d332d50 commit 88e5e26

File tree

4 files changed

+210
-102
lines changed

4 files changed

+210
-102
lines changed

src/main/java/de/tilman_neumann/jml/powers/PurePowerTest.java

+9-102
Original file line numberDiff line numberDiff line change
@@ -13,11 +13,7 @@
1313
*/
1414
package de.tilman_neumann.jml.powers;
1515

16-
import java.io.BufferedReader;
17-
import java.io.InputStreamReader;
1816
import java.math.BigInteger;
19-
import java.security.SecureRandom;
20-
import java.util.ArrayList;
2117

2218
import org.apache.logging.log4j.Logger;
2319
import org.apache.logging.log4j.LogManager;
@@ -27,8 +23,6 @@
2723
import de.tilman_neumann.jml.primes.exact.AutoExpandingPrimesArray;
2824
import de.tilman_neumann.jml.roots.Roots;
2925
import de.tilman_neumann.jml.roots.SqrtExact;
30-
import de.tilman_neumann.util.Ensure;
31-
import de.tilman_neumann.util.ConfigUtil;
3226

3327
import static de.tilman_neumann.jml.base.BigIntConstants.*;
3428

@@ -43,6 +37,8 @@
4337
public class PurePowerTest {
4438
private static final Logger LOG = LogManager.getLogger(PurePowerTest.class);
4539

40+
private static final boolean DEBUG = false;
41+
4642
private static final double LN_2 = Math.log(2);
4743
private static final double LN_3 = Math.log(3);
4844

@@ -97,7 +93,7 @@ public Result test_v01(BigInteger N) {
9793
// N is even -> we can test bit patterns before the full i.th root
9894
BigInteger N_reduced = N.shiftRight(lsb);
9995
for (int b = 3; b<log3N; b=primesArray.getPrime(++bIndex)) {
100-
//LOG.debug("test b = " + b);
96+
if (DEBUG) LOG.debug("test b = " + b);
10197
// if the number of trailing zeros in N is not equal to 0 (mod b), then N is not a b.th power
10298
if (lsb % b != 0) continue;
10399
// full b.th root required
@@ -110,7 +106,7 @@ public Result test_v01(BigInteger N) {
110106
} else {
111107
// N is odd
112108
for (int b = 3; b<log3N; b=primesArray.getPrime(++bIndex)) {
113-
//LOG.debug("test b = " + b);
109+
if (DEBUG) LOG.debug("test b = " + b);
114110
BigInteger floor_bthRoot = Roots.ithRoot(N, b)[0];
115111
if (floor_bthRoot.pow(b).equals(N)) {
116112
// found exact power!
@@ -191,11 +187,11 @@ public Result test_v01(BigInteger N) {
191187
// Sieve out some powers: If (2b+1) is prime, then N = x^b is only possible if N^2 == 1 (mod (2b+1)) or if (2b+1) | N
192188
final int b2p = (b<<1) + 1;
193189
while (b2 < b2p) b2 = primesArray.getPrime(b2Index++);
194-
//LOG.debug("test b = " + b + ", b2 = " + b2);
190+
if (DEBUG) LOG.debug("test b = " + b + ", b2 = " + b2);
195191
if (b2 == b2p) {
196192
// 2*b+1 is prime
197193
final int mod = N_square.mod(b2p);
198-
//LOG.debug("N = " + N + ", N^2 % b2 = " + mod);
194+
if (DEBUG) LOG.debug("N = " + N + ", N^2 % b2 = " + mod);
199195
if (mod > 1) continue;
200196
}
201197
// Full root required.
@@ -220,17 +216,17 @@ public Result test_v01(BigInteger N) {
220216
int b2 = 3, b2Index = 1; // skip 2
221217
int bIndex = 1; // skip 2
222218
for (int b = 3; b<=lsb; b=primesArray.getPrime(++bIndex)) {
223-
//LOG.debug("test b = " + b);
219+
if (DEBUG) LOG.debug("test b = " + b);
224220
// N can only be a b.th power if b | lsb
225221
if (lsb % b != 0) continue;
226222
// Sieve out some powers: If (2b+1) is prime, then N = x^b is only possible if N^2 == 1 (mod (2b+1)) or if (2b+1) | N
227223
final int b2p = (b<<1) + 1;
228224
while (b2 < b2p) b2 = primesArray.getPrime(b2Index++);
229-
//LOG.debug("test b = " + b + ", b2 = " + b2);
225+
if (DEBUG) LOG.debug("test b = " + b + ", b2 = " + b2);
230226
if (b2 == b2p) {
231227
// 2*b+1 is prime
232228
final int mod = N_reduced_square.mod(b2p);
233-
//LOG.debug("N = " + N + ", N^2 % b2 = " + mod);
229+
if (DEBUG) LOG.debug("N = " + N + ", N^2 % b2 = " + mod);
234230
if (mod > 1) continue;
235231
}
236232
// full b.th root required
@@ -242,93 +238,4 @@ public Result test_v01(BigInteger N) {
242238
}
243239
return null; // no pure power
244240
}
245-
246-
private static void testCorrectness(int nCount) {
247-
PurePowerTest powTest = new PurePowerTest();
248-
249-
// create test set for performance test
250-
SecureRandom rng = new SecureRandom();
251-
for (int bits=10; bits<=50; bits+=5) {
252-
LOG.info("Test correctness with " + nCount + " " + bits + "-bit numbers");
253-
ArrayList<BigInteger> testSet = new ArrayList<BigInteger>();
254-
for (int i=0; i<nCount; i++) {
255-
testSet.add(new BigInteger(bits, rng));
256-
}
257-
258-
// test correctness:
259-
// pure powers are not unique, e.g. 3^9 == 27^3, thus we can only check if the final result is correct
260-
for (BigInteger testNum : testSet) {
261-
Result r1 = powTest.test_v01(testNum);
262-
if (r1!=null) Ensure.ensureEquals(testNum, r1.base.pow(r1.exponent));
263-
264-
Result r2 = powTest.test/*_v02*/(testNum);
265-
Ensure.ensureEquals(r1==null, r2==null);
266-
if (r2!=null) Ensure.ensureEquals(testNum, r2.base.pow(r2.exponent));
267-
}
268-
}
269-
LOG.info("");
270-
}
271-
272-
private static void testPerformance(int nCount) {
273-
PurePowerTest powTest = new PurePowerTest();
274-
275-
// create test set for performance test
276-
SecureRandom rng = new SecureRandom();
277-
for (int bits=50; ; bits+=50) {
278-
ArrayList<BigInteger> testSet = new ArrayList<BigInteger>();
279-
for (int i=0; i<nCount; i++) {
280-
testSet.add(new BigInteger(bits, rng));
281-
}
282-
283-
// test performance
284-
long t0, t1;
285-
t0 = System.currentTimeMillis();
286-
for (BigInteger testNum : testSet) {
287-
powTest.test_v01(testNum);
288-
}
289-
t1 = System.currentTimeMillis();
290-
LOG.info("v01: Testing " + nCount + " " + bits + "-bit numbers took " + (t1-t0) + " ms");
291-
292-
t0 = System.currentTimeMillis();
293-
for (BigInteger testNum : testSet) {
294-
powTest.test/*_v02*/(testNum);
295-
}
296-
t1 = System.currentTimeMillis();
297-
LOG.info("v02: Testing " + nCount + " " + bits + "-bit numbers took " + (t1-t0) + " ms");
298-
LOG.info("");
299-
}
300-
}
301-
302-
private static void testInputs() {
303-
PurePowerTest powTest = new PurePowerTest();
304-
while(true) {
305-
try {
306-
LOG.info("Insert test argument N:");
307-
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
308-
String line = in.readLine();
309-
String input = line !=null ? line.trim() : "";
310-
//LOG.debug("input = >" + input + "<");
311-
BigInteger N = new BigInteger(input);
312-
Result purePower = powTest.test(N);
313-
if (purePower == null) {
314-
LOG.info("N = " + N + " is not a pure power.");
315-
} else {
316-
LOG.info("N = " + N + " = " + purePower.base + "^" + purePower.exponent + " is a pure power!");
317-
}
318-
} catch (Exception ex) {
319-
LOG.error("Error " + ex, ex);
320-
}
321-
}
322-
}
323-
324-
/**
325-
* Test.
326-
* @param args ignored
327-
*/
328-
public static void main(String[] args) {
329-
ConfigUtil.initProject();
330-
testCorrectness(100000);
331-
testPerformance(1000000);
332-
testInputs();
333-
}
334241
}
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,71 @@
1+
/*
2+
* java-math-library is a Java library focused on number theory, but not necessarily limited to it. It is based on the PSIQS 4.0 factoring project.
3+
* Copyright (C) 2018-2024 Tilman Neumann - [email protected]
4+
*
5+
* This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License
6+
* as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
7+
*
8+
* This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
9+
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
10+
*
11+
* You should have received a copy of the GNU General Public License along with this program;
12+
* if not, see <http://www.gnu.org/licenses/>.
13+
*/
14+
package de.tilman_neumann.jml.powers;
15+
16+
import java.math.BigInteger;
17+
import java.security.SecureRandom;
18+
import java.util.ArrayList;
19+
20+
import org.apache.logging.log4j.Logger;
21+
import org.apache.logging.log4j.LogManager;
22+
23+
import de.tilman_neumann.util.ConfigUtil;
24+
25+
/**
26+
* Test performance of pure power tests.
27+
*
28+
* @author Tilman Neumann
29+
*/
30+
public class PurePowerTestPerformanceTest {
31+
private static final Logger LOG = LogManager.getLogger(PurePowerTestPerformanceTest.class);
32+
33+
private static void testPerformance(int nCount) {
34+
PurePowerTest powTest = new PurePowerTest();
35+
36+
// create test set for performance test
37+
SecureRandom rng = new SecureRandom();
38+
for (int bits=50; ; bits+=50) {
39+
ArrayList<BigInteger> testSet = new ArrayList<BigInteger>();
40+
for (int i=0; i<nCount; i++) {
41+
testSet.add(new BigInteger(bits, rng));
42+
}
43+
44+
// test performance
45+
long t0, t1;
46+
t0 = System.currentTimeMillis();
47+
for (BigInteger testNum : testSet) {
48+
powTest.test_v01(testNum);
49+
}
50+
t1 = System.currentTimeMillis();
51+
LOG.info("v01: Testing " + nCount + " " + bits + "-bit numbers took " + (t1-t0) + " ms");
52+
53+
t0 = System.currentTimeMillis();
54+
for (BigInteger testNum : testSet) {
55+
powTest.test/*_v02*/(testNum);
56+
}
57+
t1 = System.currentTimeMillis();
58+
LOG.info("v02: Testing " + nCount + " " + bits + "-bit numbers took " + (t1-t0) + " ms");
59+
LOG.info("");
60+
}
61+
}
62+
63+
/**
64+
* Test.
65+
* @param args ignored
66+
*/
67+
public static void main(String[] args) {
68+
ConfigUtil.initProject();
69+
testPerformance(1000000);
70+
}
71+
}
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,60 @@
1+
/*
2+
* java-math-library is a Java library focused on number theory, but not necessarily limited to it. It is based on the PSIQS 4.0 factoring project.
3+
* Copyright (C) 2018-2024 Tilman Neumann - [email protected]
4+
*
5+
* This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License
6+
* as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
7+
*
8+
* This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
9+
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
10+
*
11+
* You should have received a copy of the GNU General Public License along with this program;
12+
* if not, see <http://www.gnu.org/licenses/>.
13+
*/
14+
package de.tilman_neumann.jml.powers;
15+
16+
import java.io.BufferedReader;
17+
import java.io.InputStreamReader;
18+
import java.math.BigInteger;
19+
20+
import org.apache.logging.log4j.Logger;
21+
import org.apache.logging.log4j.LogManager;
22+
23+
import de.tilman_neumann.jml.powers.PurePowerTest.Result;
24+
import de.tilman_neumann.util.ConfigUtil;
25+
26+
/**
27+
* Test the pure powers by user inputs.
28+
*
29+
* @author Tilman Neumann
30+
*/
31+
public class PurePowerTestRunner {
32+
private static final Logger LOG = LogManager.getLogger(PurePowerTestRunner.class);
33+
34+
/**
35+
* Test.
36+
* @param args ignored
37+
*/
38+
public static void main(String[] args) {
39+
ConfigUtil.initProject();
40+
PurePowerTest powTest = new PurePowerTest();
41+
while(true) {
42+
try {
43+
LOG.info("Insert test argument N:");
44+
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
45+
String line = in.readLine();
46+
String input = line !=null ? line.trim() : "";
47+
//LOG.debug("input = >" + input + "<");
48+
BigInteger N = new BigInteger(input);
49+
Result purePower = powTest.test(N);
50+
if (purePower == null) {
51+
LOG.info("N = " + N + " is not a pure power.");
52+
} else {
53+
LOG.info("N = " + N + " = " + purePower.base + "^" + purePower.exponent + " is a pure power!");
54+
}
55+
} catch (Exception ex) {
56+
LOG.error("Error " + ex, ex);
57+
}
58+
}
59+
}
60+
}
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,70 @@
1+
/*
2+
* java-math-library is a Java library focused on number theory, but not necessarily limited to it. It is based on the PSIQS 4.0 factoring project.
3+
* Copyright (C) 2018-2024 Tilman Neumann - [email protected]
4+
*
5+
* This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License
6+
* as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
7+
*
8+
* This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
9+
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
10+
*
11+
* You should have received a copy of the GNU General Public License along with this program;
12+
* if not, see <http://www.gnu.org/licenses/>.
13+
*/
14+
package de.tilman_neumann.jml.powers;
15+
16+
import java.math.BigInteger;
17+
import java.security.SecureRandom;
18+
import java.util.ArrayList;
19+
20+
import org.apache.logging.log4j.Logger;
21+
import org.junit.BeforeClass;
22+
import org.junit.Test;
23+
import org.apache.logging.log4j.LogManager;
24+
25+
import de.tilman_neumann.jml.powers.PurePowerTest.Result;
26+
import de.tilman_neumann.util.ConfigUtil;
27+
28+
import static org.junit.Assert.assertEquals;
29+
30+
/**
31+
* Unit tests for the pure power test.
32+
*
33+
* @author Tilman Neumann
34+
*/
35+
// TODO: A p-adic implementation like in gmp would be much faster for large numbers (with thousands of digits)
36+
public class PurePowerTestTest {
37+
private static final Logger LOG = LogManager.getLogger(PurePowerTestTest.class);
38+
39+
private static final int NCOUNT = 100000;
40+
41+
private static final PurePowerTest powTest = new PurePowerTest();
42+
private static final SecureRandom rng = new SecureRandom();
43+
44+
@BeforeClass
45+
public static void setup() {
46+
ConfigUtil.initProject();
47+
}
48+
49+
@Test
50+
public void testRandomNumbers() {
51+
for (int bits=10; bits<=50; bits+=5) {
52+
// create test set
53+
LOG.info("Test correctness with " + NCOUNT + " " + bits + "-bit numbers");
54+
ArrayList<BigInteger> testSet = new ArrayList<BigInteger>();
55+
for (int i=0; i<NCOUNT; i++) {
56+
testSet.add(new BigInteger(bits, rng));
57+
}
58+
59+
// pure powers are not unique, e.g. 3^9 == 27^3, thus we can only check if the final result is correct
60+
for (BigInteger testNum : testSet) {
61+
Result r1 = powTest.test_v01(testNum);
62+
if (r1!=null) assertEquals(testNum, r1.base.pow(r1.exponent));
63+
64+
Result r2 = powTest.test/*_v02*/(testNum);
65+
assertEquals(r1==null, r2==null);
66+
if (r2!=null) assertEquals(testNum, r2.base.pow(r2.exponent));
67+
}
68+
}
69+
}
70+
}

0 commit comments

Comments
 (0)