Skip to content

Commit d332d50

Browse files
committed
convert MpiPartitionGenerator tests into unit tests
1 parent 7edfb05 commit d332d50

File tree

3 files changed

+199
-163
lines changed

3 files changed

+199
-163
lines changed

src/main/java/de/tilman_neumann/jml/partitions/MpiPartitionGenerator.java

+46
Original file line numberDiff line numberDiff line change
@@ -188,4 +188,50 @@ public static long numberOfFactorizationsOf(BigInteger n) {
188188
PrimePowers mpiFromFactors = PrimePowers_DefaultImpl.valueOf(n);
189189
return numberOfPartitionsOf(mpiFromFactors);
190190
}
191+
192+
/**
193+
* Computes the number of partitions of partitions.
194+
* A001970 = 1, 1, 3, 6, 14, 27, 58, 111, 223, 424, 817, 1527, 2870, 5279, 9710, 17622, 31877, 57100, 101887, 180406, 318106, 557453, 972796, 1688797, 2920123, ...
195+
*/
196+
public static long numberOfPartitionsOfPartitions(int n) {
197+
long totalNumberOfPartitions = 0;
198+
// run over all additive partition of n
199+
IntegerPartitionGenerator partgen = new IntegerPartitionGenerator(n);
200+
while (partgen.hasNext()) {
201+
int[] flatPartition = partgen.next();
202+
// partition is in flat form, i.e. a list of all parts. convert this into the multiset form:
203+
IntegerPartition expPartition = new IntegerPartition(flatPartition);
204+
if (DEBUG) LOG.debug("expPartition from n=" + n + ": " + expPartition);
205+
// now we have all the multiplicities
206+
Mpi mpiFromPartition = new Mpi_IntegerArrayImpl(expPartition.values());
207+
MpiPartitionGenerator mpiPartGen = new MpiPartitionGenerator(mpiFromPartition);
208+
while (mpiPartGen.hasNext()) {
209+
mpiPartGen.next();
210+
totalNumberOfPartitions++;
211+
}
212+
}
213+
return totalNumberOfPartitions;
214+
}
215+
216+
/**
217+
* Computes the number of partitions of strong multisets.
218+
* This is A035310 = "Ways of partitioning an n-multiset with multiplicities some partition of n."
219+
* = 1, 4, 12, 47, 170, 750, 3255, 16010, 81199, 448156, 2579626, 15913058, 102488024, 698976419, 4976098729, 37195337408, 289517846210, 2352125666883, 19841666995265, 173888579505200, 1577888354510786, 14820132616197925, 143746389756336173, 1438846957477988926, ...
220+
*/
221+
public static long numberOfMultisetPartitions(int n) {
222+
int totalNumberOfPartitions = 0;
223+
// run over all additive partition of n:
224+
IntegerPartitionGenerator partgen = new IntegerPartitionGenerator(n);
225+
while (partgen.hasNext()) {
226+
int[] flatPartition = partgen.next();
227+
// partition is in flat form, i.e. a list of all parts.
228+
Mpi mpiFromPartition = new Mpi_IntegerArrayImpl(flatPartition);
229+
MpiPartitionGenerator mpiPartGen = new MpiPartitionGenerator(mpiFromPartition);
230+
while (mpiPartGen.hasNext()) {
231+
mpiPartGen.next();
232+
totalNumberOfPartitions++;
233+
}
234+
}
235+
return totalNumberOfPartitions;
236+
}
191237
}

src/main/java/de/tilman_neumann/jml/partitions/MpiPartitionGeneratorTest.java

-163
This file was deleted.
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,153 @@
1+
/*
2+
* java-math-library is a Java library focused on number theory, but not necessarily limited to it. It is based on the PSIQS 4.0 factoring project.
3+
* Copyright (C) 2018-2024 Tilman Neumann - [email protected]
4+
*
5+
* This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License
6+
* as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
7+
*
8+
* This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
9+
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
10+
*
11+
* You should have received a copy of the GNU General Public License along with this program;
12+
* if not, see <http://www.gnu.org/licenses/>.
13+
*/
14+
package de.tilman_neumann.jml.partitions;
15+
16+
import static org.junit.Assert.assertEquals;
17+
18+
import java.math.BigInteger;
19+
import java.util.ArrayList;
20+
21+
import org.apache.logging.log4j.Logger;
22+
import org.junit.BeforeClass;
23+
import org.junit.Test;
24+
import org.apache.logging.log4j.LogManager;
25+
26+
import de.tilman_neumann.jml.combinatorics.Factorial;
27+
import de.tilman_neumann.util.ConfigUtil;
28+
29+
public class MpiPartitionGeneratorTest {
30+
31+
private static final Logger LOG = LogManager.getLogger(MpiPartitionGeneratorTest.class);
32+
33+
private static final boolean DEBUG = false;
34+
35+
@BeforeClass
36+
public static void setup() {
37+
ConfigUtil.initProject();
38+
}
39+
40+
/**
41+
* Test the number of essentially different factorizations of n= 1, 2, 3, ...
42+
* A001055 (n=1...) = 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, ...
43+
*/
44+
@Test
45+
public void testNumberOfFactorizations() {
46+
int maxListSize = 30;
47+
ArrayList<Long> list = new ArrayList<>();
48+
for (int n=1; n<=10000; n++) {
49+
long numberOfFactorizations = MpiPartitionGenerator.numberOfFactorizationsOf(BigInteger.valueOf(n));
50+
if (DEBUG) LOG.debug(n + " can be factored in " + numberOfFactorizations + " different ways");
51+
if (list.size() < maxListSize) list.add(numberOfFactorizations);
52+
}
53+
if (DEBUG) LOG.debug("First 30 sequence elements = " + list);
54+
assertEquals("[1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5]", list.toString());
55+
}
56+
57+
/**
58+
* Test record numbers of essentially different factorizations of n = 1, 2, 3, ...
59+
* A033833 = 1, 4, 8, 12, 16, 24, 36, 48, 72, 96, 120, 144, 192, 216, 240, 288, 360, 432, 480, 576, 720, 960, 1080, 1152, 1440, 2160, 2880, 4320, 5040, 5760, 7200, 8640, 10080, 11520, ...
60+
*/
61+
@Test
62+
public void testNumberOfFactorizationsRecords() {
63+
int maxListSize = 30;
64+
ArrayList<Integer> list = new ArrayList<>();
65+
long record = 0;
66+
for (int n=1; n<=10000; n++) {
67+
long numberOfFactorizations = MpiPartitionGenerator.numberOfFactorizationsOf(BigInteger.valueOf(n));
68+
if (numberOfFactorizations > record) { // same value does not count as new record
69+
LOG.info(n + " can be factored in " + numberOfFactorizations + " different ways");
70+
record = numberOfFactorizations;
71+
if (list.size() < maxListSize) list.add(n);
72+
}
73+
}
74+
if (DEBUG) LOG.debug("First 30 sequence elements = " + list);
75+
assertEquals("[1, 4, 8, 12, 16, 24, 36, 48, 72, 96, 120, 144, 192, 216, 240, 288, 360, 432, 480, 576, 720, 960, 1080, 1152, 1440, 2160, 2880, 4320, 5040, 5760]", list.toString());
76+
}
77+
78+
/**
79+
* Test record numbers of essentially different factorizations of n per bit.
80+
* This sequence S(n) = 1, 12, 16, 24, 36, 48, 72, 96, 120, 144, 240, 288, 360, 432, 480, 576, 720, 960, 1080, 1152, ... is not in OEIS.
81+
*/
82+
@Test
83+
public void testNumberOfFactorizationsRecordsPerBit() {
84+
int maxListSize = 30;
85+
ArrayList<Integer> list = new ArrayList<>();
86+
double recordRatio = 0;
87+
for (int n=1; n<=10000; n++) {
88+
long numberOfFactorizations = MpiPartitionGenerator.numberOfFactorizationsOf(BigInteger.valueOf(n));
89+
double bits = n==1 ? 1.0 : Math.log(n)/Math.log(2.0); // ld(n)
90+
double ratio = numberOfFactorizations/bits;
91+
if (ratio > recordRatio) { // same value does not count as new record
92+
LOG.info(n + " (" + bits + " bit) can be factored in " + numberOfFactorizations + " different ways -> ratio = " + ratio);
93+
recordRatio = ratio;
94+
if (list.size() < maxListSize) list.add(n);
95+
}
96+
}
97+
if (DEBUG) LOG.debug("First 30 sequence elements = " + list);
98+
assertEquals("[1, 12, 16, 24, 36, 48, 72, 96, 120, 144, 240, 288, 360, 432, 480, 576, 720, 960, 1080, 1152, 1440, 2160, 2880, 4320, 5040, 5760, 7200, 8640]", list.toString());
99+
}
100+
101+
/**
102+
* Test the number of essentially different factorizations of n!.
103+
* This is A076716(n=2, 3, ...) = 1, 2, 7, 21, 98, 392, 2116, 11830, 70520, 425240, ...
104+
*/
105+
@Test
106+
public void testNumberOfFactorialFactorizations() {
107+
ArrayList<Long> list = new ArrayList<>();
108+
for (int n=2; n<=11; n++) {
109+
long start = System.currentTimeMillis();
110+
BigInteger factorial = Factorial.factorial(n);
111+
long numberOfFactorizations = MpiPartitionGenerator.numberOfFactorizationsOf(factorial);
112+
LOG.info(n + "! = " + factorial + " can be factored in " + numberOfFactorizations + " different ways (computed in " + (System.currentTimeMillis()-start) + " ms)");
113+
list.add(numberOfFactorizations);
114+
}
115+
if (DEBUG) LOG.debug("list = " + list);
116+
assertEquals("[1, 2, 7, 21, 98, 392, 2116, 11830, 70520, 425240]", list.toString());
117+
}
118+
119+
/**
120+
* Test the number of partitions of partitions.
121+
* A001970 = 1, 1, 3, 6, 14, 27, 58, 111, 223, 424, 817, 1527, 2870, 5279, 9710, 17622, 31877, 57100, 101887, 180406, 318106, 557453, 972796, 1688797, 2920123, ...
122+
*/
123+
@Test
124+
public void testPartitionsOfPartitions() {
125+
ArrayList<Long> list = new ArrayList<>();
126+
for (int n=0; n<=20; n++) {
127+
long start = System.currentTimeMillis();
128+
long totalNumberOfPartitions = MpiPartitionGenerator.numberOfPartitionsOfPartitions(n);
129+
LOG.info(n + " has " + totalNumberOfPartitions + " partitions of partitions (computed in " + (System.currentTimeMillis()-start) + " ms)");
130+
list.add(totalNumberOfPartitions);
131+
}
132+
if (DEBUG) LOG.debug("list = " + list);
133+
assertEquals("[1, 1, 3, 6, 14, 27, 58, 111, 223, 424, 817, 1527, 2870, 5279, 9710, 17622, 31877, 57100, 101887, 180406, 318106]", list.toString());
134+
}
135+
136+
/**
137+
* Test the number of partitions of strong multisets.
138+
* This is A035310 = "Ways of partitioning an n-multiset with multiplicities some partition of n."
139+
* = 1, 4, 12, 47, 170, 750, 3255, 16010, 81199, 448156, 2579626, 15913058, 102488024, 698976419, 4976098729, 37195337408, 289517846210, 2352125666883, 19841666995265, 173888579505200, 1577888354510786, 14820132616197925, 143746389756336173, 1438846957477988926, ...
140+
*/
141+
@Test
142+
public void testMultisetPartitions() {
143+
ArrayList<Long> list = new ArrayList<>();
144+
for (int n=1; n<=10; n++) {
145+
long start = System.currentTimeMillis();
146+
long totalNumberOfPartitions = MpiPartitionGenerator.numberOfMultisetPartitions(n);
147+
LOG.info(n + " has " + totalNumberOfPartitions + " multiset partitions (computed in " + (System.currentTimeMillis()-start) + " ms)");
148+
list.add(totalNumberOfPartitions);
149+
}
150+
if (DEBUG) LOG.debug("list = " + list);
151+
assertEquals("[1, 4, 12, 47, 170, 750, 3255, 16010, 81199, 448156]", list.toString());
152+
}
153+
}

0 commit comments

Comments
 (0)